Michal Otyepka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2905782/publications.pdf

Version: 2024-02-01

324 papers 23,434 citations

73 h-index

9786

138 g-index

341 all docs

341 docs citations

times ranked

341

26335 citing authors

#	Article	IF	CITATIONS
1	Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112, 6156-6214.	47.7	3,531
2	Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. Journal of Chemical Theory and Computation, 2011, 7, 2886-2902.	5.3	873
3	Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots. ACS Nano, 2017, 11, 12402-12410.	14.6	550
4	CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics, 2006, 7, 316.	2.6	453
5	Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chemical Reviews, 2016, 116, 4937-4982.	47.7	408
6	RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chemical Reviews, 2018, 118, 4177-4338.	47.7	408
7	Adsorption of Small Organic Molecules on Graphene. Journal of the American Chemical Society, 2013, 135, 6372-6377.	13.7	407
8	Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. Journal of Chemical Theory and Computation, 2015, 11, 5723-5736.	5.3	392
9	Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small, 2010, 6, 2885-2891.	10.0	386
10	Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIFâ€8 Composites for Oil–Water Separation. Angewandte Chemie - International Edition, 2016, 55, 1178-1182.	13.8	370
11	Assessing the Current State of Amber Force Field Modifications for DNA. Journal of Chemical Theory and Computation, 2016, 12, 4114-4127.	5.3	351
12	Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives. ACS Nano, 2013, 7, 6434-6464.	14.6	349
13	Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins. Journal of Chemical Theory and Computation, 2010, 6, 3836-3849.	5.3	339
14	MOLE 2.0: advanced approach for analysis of biomacromolecular channels. Journal of Cheminformatics, 2013, 5, 39.	6.1	262
15	Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. Journal of Chemical Theory and Computation, 2013, 9, 2339-2354.	5.3	255
16	Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COOâ^ induced red-shift emission. Carbon, 2014, 70, 279-286.	10.3	240
17	Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nature Chemical Biology, 2009, 5, 727-733.	8.0	238
18	Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. Journal of Chemical Theory and Computation, 2012, 8, 2506-2520.	5.3	231

#	Article	IF	CITATIONS
19	Chemistry, properties, and applications of fluorographene. Applied Materials Today, 2017, 9, 60-70.	4.3	211
20	MOLE: A Voronoi Diagram-Based Explorer of Molecular Channels, Pores, and Tunnels. Structure, 2007, 15, 1357-1363.	3.3	210
21	MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Research, 2018, 46, W368-W373.	14.5	208
22	Graphitic Nitrogen Doping in Carbon Dots Causes Red-Shifted Absorption. Journal of Physical Chemistry C, 2016, 120, 1303-1308.	3.1	207
23	Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene. Journal of the American Chemical Society, 2017, 139, 3171-3180.	13.7	202
24	Modelling of graphene functionalization. Physical Chemistry Chemical Physics, 2016, 18, 6351-6372.	2.8	190
25	Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-4128.	6.7	186
26	Spectroscopic Fingerprints of Graphitic, Pyrrolic, Pyridinic, and Chemisorbed Nitrogen in N-Doped Graphene. Journal of Physical Chemistry C, 2019, 123, 10695-10702.	3.1	181
27	Molecular Dynamics and Quantum Mechanics of RNA: Conformational and Chemical Change We Can Believe In. Accounts of Chemical Research, 2010, 43, 40-47.	15.6	155
28	Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G _O W _O , GW _O and GW Calculations on Top of PBE and HSE06 Orbitals. Journal of Chemical Theory and Computation, 2013, 9, 4155-4164.	5.3	142
29	Human virus detection with graphene-based materials. Biosensors and Bioelectronics, 2020, 166, 112436.	10.1	140
30	Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. Journal of Physical Chemistry Letters, 2014, 5, 1771-1782.	4.6	139
31	Hydrophobic Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1900820.	21.0	138
32	Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. Journal of Chemical Theory and Computation, 2014, 10, 3177-3189.	5. 3	135
33	Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano, 2017, 11, 2982-2991.	14.6	133
34	Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019, 31, e1900323.	21.0	129
35	Membrane Position of Ibuprofen Agrees with Suggested Access Path Entrance to Cytochrome P450 2C9 Active Site. Journal of Physical Chemistry A, 2011, 115, 11248-11255.	2.5	128
36	Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. Journal of Chemical Theory and Computation, 2016, 12, 4534-4548.	5.3	125

3

#	Article	IF	Citations
37	MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Research, 2012, 40, W222-W227.	14.5	123
38	Covalent Grapheneâ€MOF Hybrids for Highâ€Performance Asymmetric Supercapacitors. Advanced Materials, 2021, 33, e2004560.	21.0	121
39	What common structural features and variations of mammalian P450s are known to date?. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 376-389.	2.4	119
40	Positioning of Antioxidant Quercetin and Its Metabolites in Lipid Bilayer Membranes: Implication for Their Lipid-Peroxidation Inhibition. Journal of Physical Chemistry B, 2012, 116, 1309-1318.	2.6	119
41	Shapeâ∈Assisted 2D MOF/Graphene Derived Hybrids as Exceptional Lithiumâ∈lon Battery Electrodes. Advanced Functional Materials, 2019, 29, 1902539.	14.9	118
42	Membrane-attached mammalian cytochromes P450: An overview of the membrane's effects on structure, drug binding, and interactions with redox partners. Journal of Inorganic Biochemistry, 2018, 183, 117-136.	3.5	117
43	Anaerobic Reaction of Nanoscale Zerovalent Iron with Water: Mechanism and Kinetics. Journal of Physical Chemistry C, 2014, 118, 13817-13825.	3.1	114
44	Room temperature organic magnets derived from sp3 functionalized graphene. Nature Communications, 2017, 8, 14525.	12.8	112
45	Flexibility of Human Cytochromes P450: Molecular Dynamics Reveals Differences between CYPs 3A4, 2C9, and 2A6, which Correlate with Their Substrate Preferences. Journal of Physical Chemistry B, 2008, 112, 8165-8173.	2.6	111
46	Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact. Journal of Chemical Theory and Computation, 2010, 6, 3569-3579.	5.3	108
47	Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment. Biopolymers, 2013, 99, 978-988.	2.4	106
48	Convergence of Free Energy Profile of Coumarin in Lipid Bilayer. Journal of Chemical Theory and Computation, 2012, 8, 1200-1211.	5.3	102
49	Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. Journal of Chemical Physics, 2012, 137, 034709.	3.0	101
50	The Nature of the Binding of Au, Ag, and Pd to Benzene, Coronene, and Graphene: From Benchmark CCSD(T) Calculations to Plane-Wave DFT Calculations. Journal of Chemical Theory and Computation, 2011, 7, 3743-3755.	5.3	100
51	Environmental Applications of Chemically Pure Natural Ferrihydrite. Environmental Science & Emp; Technology, 2007, 41, 4367-4374.	10.0	97
52	Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. Journal of Chemical Theory and Computation, 2019, 15, 3288-3305.	5. 3	97
53	Nature of Absorption Bands in Oxygen-Functionalized Graphitic Carbon Dots. Journal of Physical Chemistry C, 2015, 119, 13369-13373.	3.1	96
54	Behavior of Human Cytochromes P450 on Lipid Membranes. Journal of Physical Chemistry B, 2013, 117, 11556-11564.	2.6	94

#	Article	IF	Citations
55	Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism. Advanced Materials, 2016, 28, 5045-5053.	21.0	94
56	Reactivity of Fluorographene: A Facile Way toward Graphene Derivatives. Journal of Physical Chemistry Letters, 2015, 6, 1430-1434.	4.6	90
57	Anatomy of enzyme channels. BMC Bioinformatics, 2014, 15, 379.	2.6	89
58	Amphiphilic Drug-Like Molecules Accumulate in a Membrane below the Head Group Region. Journal of Physical Chemistry B, 2014, 118, 1030-1039.	2.6	89
59	Folding of guanine quadruplex molecules–funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1246-1263.	2.4	89
60	Quantum Monte Carlo Methods Describe Noncovalent Interactions with Subchemical Accuracy. Journal of Chemical Theory and Computation, 2013, 9, 4287-4292.	5.3	88
61	A high efficiency H ₂ S gas sensor material: paper like Fe ₂ O ₃ /graphene nanosheets and structural alignment dependency of device efficiency. Journal of Materials Chemistry A, 2014, 2, 6714-6717.	10.3	87
62	Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Physical Chemistry Chemical Physics, 2014, 16, 14231-14235.	2.8	86
63	Activation and inhibition of cyclin-dependent kinase-2 by phosphorylation; a molecular dynamics study reveals the functional importance of the glycine-rich loop. Protein Science, 2004, 13, 1449-1457.	7.6	85
64	Computer Folding of RNA Tetraloops? Are We There Yet?. Journal of Chemical Theory and Computation, 2013, 9, 2115-2125.	5.3	84
65	Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Advanced Materials, 2015, 27, 2305-2310.	21.0	84
66	Crystal Structure of Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 Ã Resolution:  Dynamics of Catalytic Residues,. Biochemistry, 2004, 43, 870-878.	2.5	82
67	Theoretical studies of RNA catalysis: Hybrid QM/MM methods and their comparison with MD and QM. Methods, 2009, 49, 202-216.	3.8	82
68	Quaternized carbon dot-modified graphene oxide for selective cell labelling – controlled nucleus and cytoplasm imaging. Chemical Communications, 2014, 50, 10782.	4.1	82
69	Recent Progress in Emerging Two-Dimensional Transition Metal Carbides. Nano-Micro Letters, 2021, 13, 183.	27.0	82
70	Extensive Molecular Dynamics Simulations Showing That Canonical G8 and Protonated A38H ⁺ Forms Are Most Consistent with Crystal Structures of Hairpin Ribozyme. Journal of Physical Chemistry B, 2010, 114, 6642-6652.	2.6	81
71	Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano, 2021, 15, 18742-18776.	14.6	81
72	Semiempirical Quantum Mechanical Method PM6-DH2X Describes the Geometry and Energetics of CK2-Inhibitor Complexes Involving Halogen Bonds Well, While the Empirical Potential Fails. Journal of Physical Chemistry B, 2011, 115, 8581-8589.	2.6	80

#	Article	IF	CITATIONS
73	Is Single Layer MoS ₂ Stable in the Air?. Chemistry - A European Journal, 2017, 23, 13233-13239.	3.3	80
74	Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations. Physical Chemistry Chemical Physics, 2010, 12, 10476.	2.8	79
75	The DNA and RNA sugar–phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Physical Chemistry Chemical Physics, 2012, 14, 15257.	2.8	76
76	<i>In Silico</i> Structural and Functional Analysis of Fragments of the Ankyrin Repeat Protein p18 ^{INK4c} . Journal of Biomolecular Structure and Dynamics, 2010, 27, 521-539.	3.5	74
77	Quantification of the Interaction Forces between Metals and Graphene by Quantum Chemical Calculations and Dynamic Force Measurements under Ambient Conditions. ACS Nano, 2013, 7, 1646-1651.	14.6	73
78	Benchmarking of Force Fields for Molecule–Membrane Interactions. Journal of Chemical Theory and Computation, 2014, 10, 4143-4151.	5.3	73
79	Force-Field Dependence of Chignolin Folding and Misfolding: Comparison with Experiment and Redesign. Biophysical Journal, 2012, 102, 1897-1906.	0.5	71
80	Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nature Communications, 2018, 9, 2831.	12.8	68
81	Can We Accurately Describe the Structure of Adenine Tracts in B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics. Journal of Chemical Theory and Computation, 2012, 8, 2448-2460.	5.3	67
82	Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein–RNA Complexes?. Journal of Chemical Theory and Computation, 2015, 11, 1220-1243.	5.3	67
83	Dependence of A-RNA simulations on the choice of the force field and salt strength. Physical Chemistry Chemical Physics, 2009, 11, 10701.	2.8	66
84	Hydrophilic Nanotube Supported Graphene–Water Dispersible Carbon Superstructure with Excellent Conductivity. Advanced Functional Materials, 2015, 25, 1481-1487.	14.9	66
85	Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. Journal of Physical Chemistry B, 2012, 116, 9899-9916.	2.6	64
86	High-Yield Alkylation and Arylation of Graphene via Grignard Reaction with Fluorographene. Chemistry of Materials, 2017, 29, 926-930.	6.7	64
87	Docking-Based Development of Purine-like Inhibitors of Cyclin-Dependent Kinase-2. Journal of Medicinal Chemistry, 2000, 43, 2506-2513.	6.4	62
88	Synergism of antioxidant action of vitamins E, C and quercetin is related to formation of molecular associations in biomembranes. Chemical Communications, 2015, 51, 7713-7716.	4.1	62
89	Covalently functionalized graphene as a supercapacitor electrode material. FlatChem, 2019, 13, 25-33.	5. 6	61
90	Is There a Relationship Between the Substrate Preferences and Structural Flexibility of Cytochromes P450?. Current Drug Metabolism, 2012, 13, 130-142.	1.2	60

#	Article	IF	Citations
91	Insights into Stability and Folding of GNRA and UNCG Tetraloops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics. Journal of Chemical Theory and Computation, 2015, 11, 3866-3877.	5.3	60
92	Fluorinated graphenes as advanced biosensors – effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. Nanoscale, 2016, 8, 12134-12142.	5.6	60
93	Interaction of single- and double-stranded DNA with multilayer MXene by fluorescence spectroscopy and molecular dynamics simulations. Chemical Science, 2019, 10, 10010-10017.	7.4	59
94	Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Applied Materials Today, 2021, 22, 100924.	4.3	57
95	Comparison of ab Initio, DFT, and Semiempirical QM/MM Approaches for Description of Catalytic Mechanism of Hairpin Ribozyme. Journal of Chemical Theory and Computation, 2014, 10, 1608-1622.	5.3	56
96	Functional Nanosheet Synthons by Covalent Modification of Transition-Metal Dichalcogenides. Chemistry of Materials, 2017, 29, 2066-2073.	6.7	56
97	Immobilized Enzymes on Graphene as Nanobiocatalyst. ACS Applied Materials & 2000; Interfaces, 2020, 12, 250-259.	8.0	56
98	Flexibility of human cytochrome P450 enzymes: Molecular dynamics and spectroscopy reveal important function-related variations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 58-68.	2.3	55
99	Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world. Nanoscale, 2018, 10, 4696-4707.	5.6	55
100	Protonation States of the Key Active Site Residues and Structural Dynamics of the <i>glmS</i> Riboswitch As Revealed by Molecular Dynamics. Journal of Physical Chemistry B, 2010, 114, 8701-8712.	2.6	54
101	How to understand atomistic molecular dynamics simulations of ⟨scp⟩RNA⟨/scp⟩ and protein–⟨scp⟩RNA⟨/scp⟩ complexes?. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1405.	6.4	54
102	Identification of tunnels in proteins, nucleic acids, inorganic materials and molecular ensembles. Biotechnology Journal, 2007, 2, 62-67.	3.5	53
103	The surface and structural properties of graphite fluoride. Carbon, 2015, 94, 804-809.	10.3	53
104	Water dispersible functionalized graphene fluoride with significant nonlinear optical response. Chemical Physics Letters, 2012, 543, 101-105.	2.6	52
105	Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy and Environmental Science, 2022, 15, 740-748.	30.8	51
106	Molecular Insight into Affinities of Drugs and Their Metabolites to Lipid Bilayers. Journal of Physical Chemistry B, 2013, 117, 2403-2410.	2.6	50
107	In silico pharmacology: Drug membrane partitioning and crossing. Pharmacological Research, 2016, 111, 471-486.	7.1	50
108	Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes. Journal of Chemical Theory and Computation, 2017, 13, 3911-3926.	5.3	50

#	Article	IF	Citations
109	Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs. Journal of Chemical Theory and Computation, 2011, 7, 2963-2980.	5.3	49
110	Dynamics and Hydration of the Active Sites of Mammalian Cytochromes P450 Probed by Molecular Dynamics Simulations. Current Drug Metabolism, 2012, 13, 177-189.	1.2	49
111	Band gaps and optical spectra from single―and double―ayer fluorographene to graphite fluoride: manyâ€body effects and excitonic states. Annalen Der Physik, 2014, 526, 408-414.	2.4	49
112	Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study. European Journal of Medicinal Chemistry, 2015, 89, 189-197.	5.5	49
113	Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors. Journal of Computer-Aided Molecular Design, 2011, 25, 223-235.	2.9	48
114	Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS Nano, 2021, 15, 17275-17298.	14.6	48
115	Hierarchical porous metal–organic framework materials for efficient oil–water separation. Journal of Materials Chemistry A, 2022, 10, 2751-2785.	10.3	48
116	Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations. Nucleic Acids Research, 2015, 43, gkv994.	14.5	47
117	Adsorption of Organic Molecules to van der Waals Materials: Comparison of Fluorographene and Fluorographite with Graphene and Graphite. Journal of Chemical Theory and Computation, 2017, 13, 1328-1340.	5.3	47
118	2D Chemistry: Chemical Control of Graphene Derivatization. Journal of Physical Chemistry Letters, 2018, 9, 3580-3585.	4.6	47
119	Unique cellular network formation guided by heterostructures based on reduced graphene oxide - Ti3C2Tx MXene hydrogels. Acta Biomaterialia, 2020, 115, 104-115.	8.3	47
120	Different Mechanisms of CDK5 and CDK2 Activation as Revealed by CDK5/p25 and CDK2/Cyclin A Dynamics. Journal of Biological Chemistry, 2006, 281, 7271-7281.	3.4	46
121	General Base Catalysis for Cleavage by the Active-Site Cytosine of the Hepatitis Delta Virus Ribozyme: QM/MM Calculations Establish Chemical Feasibility. Journal of Physical Chemistry B, 2008, 112, 11177-11187.	2.6	46
122	Fluorographites (CF _{<i>x</i>}) _{<i>n</i>} Exhibit Improved Heterogeneous Electronâ€Transfer Rates with Increasing Level of Fluorination: Towards the Sensing of Biomolecules. Chemistry - A European Journal, 2014, 20, 6665-6671.	3.3	46
123	Quantum Monte Carlo for noncovalent interactions: an efficient protocol attaining benchmark accuracy. Physical Chemistry Chemical Physics, 2014, 16, 20915-20923.	2.8	46
124	Structural Changes in Ceramide Bilayers Rationalize Increased Permeation through Stratum Corneum Models with Shorter Acyl Tails. Journal of Physical Chemistry B, 2015, 119, 9811-9819.	2.6	46
125	Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small, 2020, 16, e2004891.	10.0	46
126	Interaction of Graphene and Arenes with Noble Metals. Journal of Physical Chemistry C, 2012, 116, 14151-14162.	3.1	45

#	Article	IF	Citations
127	How to understand quantum chemical computations on DNA and RNA systems? A practical guide for non-specialists. Methods, 2013, 64, 3-11.	3.8	45
128	Reactive Conformation of the Active Site in the Hairpin Ribozyme Achieved by Molecular Dynamics Simulations with $\hat{l}\mu\hat{l}\P$ Force Field Reparametrizations. Journal of Physical Chemistry B, 2015, 119, 4220-4229.	2.6	45
129	Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4. Journal of Chemical Theory and Computation, 2016, 12, 2101-2109.	5.3	44
130	Exact roles of individual chemical forms of nitrogen in the photoluminescent properties of nitrogen-doped carbon dots. Applied Materials Today, 2017, 7, 190-200.	4.3	44
131	Molecular Mechanism of preQ $<$ sub $>$ 1 $<$ /sub $>$ Riboswitch Action: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2012, 116, 12721-12734.	2.6	43
132	Organic adsorbates have higher affinities to fluorographene than to graphene. Applied Materials Today, 2016, 5, 142-149.	4.3	43
133	The Hallmarks of Copper Single Atom Catalysts in Direct Alcohol Fuel Cells and Electrochemical CO ₂ Fixation. Advanced Materials Interfaces, 2021, 8, 2001822.	3.7	43
134	Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study. Journal of Physical Chemistry B, 2013, 117, 1872-1879.	2.6	42
135	Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-Quadruplexes. Nucleic Acids Research, 2019, 47, 7276-7293.	14.5	42
136	Structural Dynamics of Carbon Dots in Water and <i>N</i> , <i>N</i> -Dimethylformamide Probed by All-Atom Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2018, 14, 2076-2083.	5. 3	41
137	Structure, dynamical stability, and electronic properties of phases in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>TaS</mml:mtext><mml:mn>2 a high-level quantum mechanical calculation. Physical Review B, 2015, 92, .</mml:mn></mml:msub></mml:math>	3n2l:mn	>< #ro ml:msut
138	Single Coâ€Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction. Small, 2021, 17, e2006477.	10.0	40
139	Functionally relevant motions of haloalkane dehalogenases occur in the specificity-modulating cap domains. Protein Science, 2002, 11, 1206-1217.	7.6	40
140	Random Phase Approximation in Surface Chemistry: Water Splitting on Iron. Journal of Chemical Theory and Computation, 2013, 9, 3670-3676.	5. 3	39
141	The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function. Drug Metabolism and Disposition, 2016, 44, 576-590.	3.3	39
142	Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations. Journal of Chemical Theory and Computation, 2017, 13, 2458-2480.	5. 3	39
143	Fine-Tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. Journal of Chemical Theory and Computation, 2020, 16, 3936-3946.	5. 3	39
144	The mechanism of inhibition of the cyclin-dependent kinase-2 as revealed by the molecular dynamics study on the complex CDK2 with the peptide substrate HHASPRK. Protein Science, 2005, 14, 445-451.	7.6	38

#	Article	IF	CITATIONS
145	Lipid Enhanced Exfoliation for Production of Graphene Nanosheets. Journal of Physical Chemistry C, 2013, 117, 11800-11803.	3.1	38
146	The nature of high surface energy sites in graphene and graphite. Carbon, 2014, 73, 448-453.	10.3	38
147	Highâ€Performance Supercapacitors Based on a Zwitterionic Network of Covalently Functionalized Graphene with Iron Tetraaminophthalocyanine. Advanced Functional Materials, 2018, 28, 1801111.	14.9	38
148	Positive and Negative Effects of Dopants toward Electrocatalytic Activity of MoS ₂ and WS ₂ : Experiments and Theory. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20383-20392.	8.0	38
149	Tailoring π-conjugation and vibrational modes to steer on-surface synthesis of pentalene-bridged ladder polymers. Nature Communications, 2020, 11, 4567.	12.8	36
150	Accurate surface energies from first principles. Physical Review B, 2015, 91, .	3.2	35
151	Carbon Dots Detect Water-to-Ice Phase Transition and Act as Alcohol Sensors <i>via</i> Fluorescence Turn-Off/On Mechanism. ACS Nano, 2021, 15, 6582-6593.	14.6	34
152	Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. Journal of Chemical Theory and Computation, 2022, 18, 2642-2656.	5.3	34
153	QM/MM Studies of Hairpin Ribozyme Self-Cleavage Suggest the Feasibility of Multiple Competing Reaction Mechanisms. Journal of Physical Chemistry B, 2011, 115, 13911-13924.	2.6	33
154	Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugarâ€"phosphate backbone and their comparison with modern density functional theory. Physical Chemistry Chemical Physics, 2013, 15, 7295.	2.8	33
155	Antiallergic Effects of Pigments Isolated from Green Sea Urchin (Strongylocentrotus droebachiensis) Shells. Planta Medica, 2013, 79, 1698-1704.	1.3	33
156	Are Waters around RNA More than Just a Solvent? $\hat{a}\in$ An Insight from Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10, 401-411.	5.3	33
157	Choosing a density functional for modeling adsorptive hydrogen storage: reference quantum mechanical calculations and a comparison of dispersion-corrected density functionals. Physical Chemistry Chemical Physics, 2015, 17, 6423-6432.	2.8	33
158	Palladium nanoparticles supported on graphene acid: a stable and eco-friendly bifunctional C–C homo- and cross-coupling catalyst. Green Chemistry, 2019, 21, 5238-5247.	9.0	33
159	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small, 2022, 18, e2104628.	10.0	33
160	Dichlorocarbeneâ€Functionalized Fluorographene: Synthesis and Reaction Mechanism. Small, 2015, 11, 3790-3796.	10.0	32
161	Chemical Tuning of Specific Capacitance in Functionalized Fluorographene. Chemistry of Materials, 2019, 31, 4698-4709.	6.7	32
162	Interplay between Ethanol Adsorption to High-Energy Sites and Clustering on Graphene and Graphite Alters the Measured Isosteric Adsorption Enthalpies. Journal of Physical Chemistry C, 2015, 119, 20535-20543.	3.1	31

#	Article	IF	Citations
163	Role of the Edge Properties in the Hydrogen Evolution Reaction on MoS ₂ . Chemistry - A European Journal, 2017, 23, 4863-4869.	3.3	31
164	Influence of BII Backbone Substates on DNA Twist: A Unified View and Comparison of Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences. Journal of Chemical Information and Modeling, 2017, 57, 275-287.	5.4	31
165	ChannelsDB: database of biomacromolecular tunnels and pores. Nucleic Acids Research, 2018, 46, D399-D405.	14.5	30
166	Functional flexibility of human cyclin-dependent kinase-2 and its evolutionary conservation. Protein Science, 2007, 17, 22-33.	7.6	29
167	Dissociation of Water at Iron Surfaces: Generalized Gradient Functional and Range-Separated Hybrid Functional Study. Journal of Physical Chemistry C, 2012, 116, 25470-25477.	3.1	29
168	NZVI modified magnetic filter paper with high redox and catalytic activities for advanced water treatment technologies. Chemical Communications, 2014, 50, 15673-15676.	4.1	29
169	Structural dynamics of propeller loop: towards folding of RNA G-quadruplex. Nucleic Acids Research, 2018, 46, 8754-8771.	14.5	29
170	UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. Journal of Chemical Theory and Computation, 2020, 16, 7601-7617.	5.3	29
171	Rationalization of Reduced Penetration of Drugs through Ceramide Gel Phase Membrane. Langmuir, 2014, 30, 13942-13948.	3.5	28
172	The role of an active site Mg ²⁺ in HDV ribozyme self-cleavage: insights from QM/MM calculations. Physical Chemistry Chemical Physics, 2015, 17, 670-679.	2.8	28
173	Optical properties of wine pigments: theoretical guidelines with new methodological perspectives. Tetrahedron, 2015, 71, 3079-3088.	1.9	28
174	Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5805-5811.	8.0	28
175	Density-Functional, Density-Functional Tight-Binding, and Wave Function Calculations on Biomolecular Systemsâ€. Journal of Physical Chemistry A, 2007, 111, 5642-5647.	2.5	27
176	A Novel Approach for Deriving Force Field Torsion Angle Parameters Accounting for Conformation-Dependent Solvation Effects. Journal of Chemical Theory and Computation, 2012, 8, 3232-3242.	5.3	27
177	Noncanonical $\hat{l}\pm /\hat{l}^3$ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field. Journal of Physical Chemistry B, 2017, 121, 2420-2433.	2.6	27
178	Role of the puckered anisotropic surface in the surface and adsorption properties of black phosphorus. Nanoscale, 2018, 10, 8979-8988.	5.6	27
179	Cyanographene and Graphene Acid: The Functional Group of Graphene Derivative Determines the Application in Electrochemical Sensing and Capacitors. ChemElectroChem, 2019, 6, 229-234.	3.4	27
180	Covalently Interlinked Graphene Sheets with Sulfurâ€Chains Enable Superior Lithium–Sulfur Battery Cathodes at Fullâ€Mass Level. Advanced Functional Materials, 2021, 31, 2101326.	14.9	27

#	Article	IF	Citations
181	Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics. Advanced Science, 2021, 8, 2003090.	11.2	27
182	Transparent and Low-Loss Luminescent Solar Concentrators Based on Self-Trapped Exciton Emission in Lead-Free Double Perovskite Nanocrystals. ACS Applied Energy Materials, 2021, 4, 6445-6453.	5.1	27
183	ATP and magnesium drive conformational changes of the Na+/K+-ATPase cytoplasmic headpiece. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1081-1091.	2.6	26
184	Noncanonical Hydrogen Bonding in Nucleic Acids. Benchmark Evaluation of Key Base–Phosphate Interactions in Folded RNA Molecules Using Quantum-Chemical Calculations and Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2011, 115, 11277-11292.	2.5	26
185	Coarse-Grain Simulations of Skin Ceramide NS with Newly Derived Parameters Clarify Structure of Melted Phase. Journal of Physical Chemistry B, 2015, 119, 3988-3998.	2.6	26
186	Surface heterogeneity: Information from inverse gas chromatography and application to model pharmaceutical substances. Current Opinion in Colloid and Interface Science, 2016, 24, 64-71.	7.4	26
187	Tunable Synthesis of Nitrogen Doped Graphene from Fluorographene under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 4764-4772.	6.7	26
188	A multifunctional covalently linked graphene–MOF hybrid as an effective chemiresistive gas sensor. Journal of Materials Chemistry A, 2021, 9, 17434-17441.	10.3	26
189	Role of Ionizable Lipids in SARS-CoV-2 Vaccines As Revealed by Molecular Dynamics Simulations: From Membrane Structure to Interaction with mRNA Fragments. Journal of Physical Chemistry Letters, 2021, 12, 11199-11205.	4.6	26
190	Metal-organic framework/conductive polymer hybrid materials for supercapacitors. Applied Materials Today, 2022, 26, 101387.	4.3	26
191	2,6,8,9-Tetrasubstituted Purines as New CDK1 Inhibitors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2993-2996.	2.2	25
192	Mechanism of enhanced conversion of 1,2,3-trichloropropane by mutant haloalkane dehalogenase revealed by molecular modeling. Journal of Computer-Aided Molecular Design, 2006, 20, 375-383.	2.9	25
193	Effect of Cholesterol on the Structure of Membrane-Attached Cytochrome P450 3A4. Journal of Chemical Information and Modeling, 2015, 55, 628-635.	5.4	25
194	Intrinsic photoluminescence of amine-functionalized graphene derivatives for bioimaging applications. Applied Materials Today, 2019, 17, 112-122.	4.3	25
195	lon Interactions across Graphene in Electrolyte Aqueous Solutions. Journal of Physical Chemistry C, 2019, 123, 9799-9806.	3.1	25
196	Conformational Behavior and Optical Properties of a Fluorophore Dimer as a Model of Luminescent Centers in Carbon Dots. Journal of Physical Chemistry C, 2020, 124, 14327-14337.	3.1	25
197	Carboxylated Graphene for Radical-Assisted Ultra-Trace-Level Water Treatment and Noble Metal Recovery. ACS Nano, 2021, 15, 3349-3358.	14.6	25
198	Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosensors and Bioelectronics, 2022, 195, 113628.	10.1	25

#	Article	IF	Citations
199	Graphene Acid for Lithiumâ€lon Batteriesâ€"Carboxylation Boosts Storage Capacity in Graphene. Advanced Energy Materials, 2022, 12, .	19.5	25
200	Dynamics and Binding Modes of Free cdk2 and its Two Complexes with Inhibitors Studied by Computer Simulations. Journal of Biomolecular Structure and Dynamics, 2002, 20, 141-154.	3.5	24
201	Second step of hydrolytic dehalogenation in haloalkane dehalogenase investigated by QM/MM methods. Proteins: Structure, Function and Bioinformatics, 2008, 70, 707-717.	2.6	24
202	Energies and 2′-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations. Journal of Chemical Theory and Computation, 2014, 10, 463-480.	5. 3	24
203	Effect of Lipid Charge on Membrane Immersion of Cytochrome P450 3A4. Journal of Physical Chemistry B, 2016, 120, 11205-11213.	2.6	24
204	Molecular Fluorophores Self-Organize into C-Dot Seeds and Incorporate into C-Dot Structures. Journal of Physical Chemistry Letters, 2020, 11, 8252-8258.	4.6	24
205	First Step in the Reaction of Zerovalent Iron with Water. Journal of Chemical Theory and Computation, 2011, 7, 2876-2885.	5.3	23
206	Surface energy analysis (SEA) and rheology of powder milk dairy products. Food Chemistry, 2015, 174, 25-30.	8.2	23
207	Alkynylation of graphene <i>via</i> the Sonogashira C–C cross-coupling reaction on fluorographene. Chemical Communications, 2019, 55, 1088-1091.	4.1	23
208	Arene C H insertion catalyzed by ferrocene covalently heterogenized on graphene acid. Carbon, 2019, 143, 318-328.	10.3	23
209	Glycine-Rich Loop of Mitochondrial Processing Peptidase α-Subunit Is Responsible for Substrate Recognition by a Mechanism Analogous to Mitochondrial Receptor Tom20. Journal of Molecular Biology, 2010, 396, 1197-1210.	4.2	22
210	Lipid Bilayer Membrane Affinity Rationalizes Inhibition of Lipid Peroxidation by a Natural Lignan Antioxidant. Journal of Physical Chemistry B, 2013, 117, 5043-5049.	2.6	22
211	A- to B-DNA Transition in AMBER Force Fields and Its Coupling to Sugar Pucker. Journal of Chemical Theory and Computation, 2018, 14, 319-328.	5.3	22
212	Variability of Câ€"F Bonds Governs the Formation of Specific Structural Motifs in Fluorinated Graphenes. Journal of Physical Chemistry C, 2019, 123, 27896-27903.	3.1	22
213	Contribution of the Molecular Fluorophore IPCA to Excitation-Independent Photoluminescence of Carbon Dots. Journal of Physical Chemistry C, 2021, 125, 12140-12148.	3.1	22
214	Interaction Energies for the Purine Inhibitor Roscovitine with Cyclin-Dependent Kinase 2: Correlated Ab Initio Quantum-Chemical, DFT and Empirical Calculations. Chemistry - A European Journal, 2006, 12, 4297-4304.	3.3	21
215	Direct mapping of chemical oxidation of individual graphene sheets through dynamic force measurements at the nanoscale. Nanoscale, 2017, 9, 119-127.	5 . 6	21
216	Oneâ€Step Synthesis of Janus Fluorographene Derivatives. Chemistry - A European Journal, 2020, 26, 6518-6524.	3.3	21

#	Article	IF	Citations
217	Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields. Journal of Physical Chemistry B, 2015, 119, 15176-15190.	2.6	20
218	Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1072-1090.	2.4	20
219	Combined high degree of carboxylation and electronic conduction in graphene acid sets new limits for metal free catalysis in alcohol oxidation. Chemical Science, 2019, 10, 9438-9445.	7.4	20
220	New Limits for Stability of Supercapacitor Electrode Material Based on Graphene Derivative. Nanomaterials, 2020, 10, 1731.	4.1	20
221	Tailoring Electronic and Magnetic Properties of Graphene by Phosphorus Doping. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34074-34085.	8.0	20
222	Two-dimensional MOF-based liquid marbles: surface energy calculations and efficient oil–water separation using a ZIF-9-III@PVDF membrane. Journal of Materials Chemistry A, 2021, 9, 23651-23659.	10.3	20
223	Binding of quinidine radically increases the stability and decreases the flexibility of the cytochrome P450 2D6 active site. Journal of Inorganic Biochemistry, 2012, 110, 46-50.	3.5	19
224	Spin-Crossing in an Organometallic Pt–Benzene Complex. Journal of Chemical Theory and Computation, 2013, 9, 1461-1468.	5.3	19
225	Multidrug resistance-associated protein 4 (MRP4) controls ganciclovir intracellular accumulation and contributes to ganciclovir-induced neutropenia in renal transplant patients. Pharmacological Research, $2016, 111, 501-508$.	7.1	19
226	Surface properties of MoS ₂ probed by inverse gas chromatography and their impact on electrocatalytic properties. Nanoscale, 2017, 9, 19236-19244.	5.6	19
227	Structural patterns of the human ABCC4/MRP4 exporter in lipid bilayers rationalize clinically observed polymorphisms. Pharmacological Research, 2018, 133, 318-327.	7.1	19
228	Zigzag sp ² Carbon Chains Passing through an sp ³ Framework: A Driving Force toward Room-Temperature Ferromagnetic Graphene. ACS Nano, 2018, 12, 12847-12859.	14.6	19
229	Rhenium Doping of Layered Transition-Metal Diselenides Triggers Enhancement of Photoelectrochemical Activity. ACS Nano, 2021, 15, 2374-2385.	14.6	19
230	Insights into G-Quadruplex–Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding. Journal of Chemical Theory and Computation, 2021, 17, 1883-1899.	5.3	19
231	Flow induced HeLa cell detachment kinetics show that oxygen-containing functional groups in graphene oxide are potent cell adhesion enhancers. Nanoscale, 2019, 11, 3222-3228.	5.6	18
232	W-RESP: Well-Restrained Electrostatic Potential-Derived Charges. Revisiting the Charge Derivation Model. Journal of Chemical Theory and Computation, 2021, 17, 3495-3509.	5.3	18
233	Graphene with Covalently Grafted Amino Acid as a Route Toward Ecoâ€Friendly and Sustainable Supercapacitors. ChemSusChem, 2021, 14, 3904-3914.	6.8	18
234	Analysis of CDK2 active-site hydration: A method to design new inhibitors. Proteins: Structure, Function and Bioinformatics, 2004, 55, 258-274.	2.6	17

#	Article	IF	CITATIONS
235	Conformational Energies of DNA Sugarâ 'Phosphate Backbone: Reference QM Calculations and a Comparison with Density Functional Theory and Molecular Mechanics. Journal of Chemical Theory and Computation, 2010, 6, 3817-3835.	5.3	17
236	Recent advancements in metal–organic frameworks integrating quantum dots (QDs@MOF) and their potential applications. Nanotechnology Reviews, 2022, 11, 1947-1976.	5.8	17
237	Correlation of Dissociation Constants of 2- and 2,6-Substituted Anilines in Water by Methods Based on the Similarity Principle and Quantum-Chemistry Calculations. Journal of Physical Chemistry A, 2003, 107, 11489-11496.	2.5	16
238	Functionally relevant motions of haloalkane dehalogenases occur in the specificityâ€modulating cap domains. Protein Science, 2002, 11, 1206-1217.	7.6	16
239	A cancer-derived mutation in the PSTAIRE helix of cyclin-dependent kinase 2 alters the stability of cyclin binding. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 858-864.	4.1	16
240	Biomimetische superhydrophobe/superoleophile hoch fluorierte Graphenoxidâ€ZIFâ€8â€Komposite fÃ⅓r die Ölâ€Wasserâ€7rennung. Angewandte Chemie, 2016, 128, 1193-1197.	2.0	16
241	Nonenzymatic Oligomerization of 3′,5′ yclic CMP Induced by Proton and UV Irradiation Hints at a Nonfastidious Origin of RNA. ChemBioChem, 2017, 18, 1535-1543.	2.6	16
242	Bonding Motifs in Metal–Organic Compounds on Surfaces. Journal of the American Chemical Society, 2018, 140, 12884-12889.	13.7	16
243	Stability of Two-Quartet G-Quadruplexes and Their Dimers in Atomistic Simulations. Journal of Chemical Theory and Computation, 2020, 16, 3447-3463.	5.3	16
244	Tunable one-step double functionalization of graphene based on fluorographene chemistry. Chemical Communications, 2020, 56, 1936-1939.	4.1	16
245	Multiresponsive 2D Ti ₃ C ₂ T _{<i>x</i>} MXene <i>via</i> <td>14.6</td> <td>16</td>	14.6	16
246	Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape. Rna, 2014, 20, 1112-1128.	3.5	15
247	Microwave Energy Drives "On–Off–On―Spinâ€Switch Behavior in Nitrogenâ€Doped Graphene. Advance Materials, 2019, 31, e1902587.	d 21.0	15
248	Thermally reduced fluorographenes as efficient electrode materials for supercapacitors. Nanoscale, 2019, 11, 21364-21375.	5.6	15
249	Oxidation of metallic two-dimensional transition metal dichalcogenides: 1T-MoS ₂ and 1T-TaS ₂ . 2D Materials, 2020, 7, 045005.	4.4	15
250	Formic Acid, a Ubiquitous but Overlooked Component of the Early Earth Atmosphere. Chemistry - A European Journal, 2020, 26, 12075-12080.	3.3	15
251	2D graphene derivatives as heterogeneous catalysts to produce biofuels via esterification and trans-esterification reactions. Applied Materials Today, 2021, 23, 101053.	4.3	15
252	Enhanced Onâ€Site Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated Nâ€Doped Graphene Catalyst. ChemCatChem, 2021, 13, 4372-4383.	3.7	15

#	Article	IF	Citations
253	Challenges in the theoretical description of nanoparticle reactivity: Nano zeroâ€valent iron. International Journal of Quantum Chemistry, 2014, 114, 987-992.	2.0	14
254	Thiophenolâ€Modified Fluorographene Derivatives for Nonlinear Optical Applications. ChemPlusChem, 2019, 84, 1288-1298.	2.8	14
255	Selective Functionalization Blended with Scaffold Conductivity in Graphene Acid Promotes H ₂ O ₂ Electrochemical Sensing. ACS Omega, 2019, 4, 19944-19952.	3.5	14
256	Anchoring of single-platinum-adatoms on cyanographene: Experiment and theory. Applied Materials Today, 2020, 18, 100462.	4.3	14
257	Pinning ultrasmall greigite nanoparticles on graphene for effective transition-metal-sulfide supercapacitors in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2020, 8, 25716-25726.	10.3	14
258	On-Surface Synthesis of One-Dimensional Coordination Polymers with Tailored Magnetic Anisotropy. ACS Applied Materials & Diterfaces, 2021, 13, 32393-32401.	8.0	14
259	Regulatory phosphorylation of cyclin-dependent kinase 2: insights from molecular dynamics simulations. Journal of Molecular Modeling, 2008, 14, 761-768.	1.8	13
260	Theoretical Studies on the Intermolecular Interactions of Potentially Primordial Baseâ€Pair Analogues. Chemistry - A European Journal, 2010, 16, 3057-3065.	3.3	13
261	Lipocarbazole, an efficient lipid peroxidation inhibitor anchored in the membrane. Bioorganic and Medicinal Chemistry, 2015, 23, 4866-4870.	3.0	13
262	Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17517-17525.	8.0	13
263	Mechanistic Insight into the Limiting Factors of Graphene-Based Environmental Sensors. ACS Applied Materials & Company (Interfaces, 2020, 12, 39764-39771.	8.0	13
264	Graphene Lattices with Embedded Transition-Metal Atoms and Tunable Magnetic Anisotropy Energy: Implications for Spintronic Devices. ACS Applied Nano Materials, 2022, 5, 1562-1573.	5.0	13
265	Molecular insights into the role of a distal F240A mutation that alters CYP1A1 activity towards persistent organic pollutants. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2852-2860.	2.4	12
266	RNA nanopatterning on graphene. 2D Materials, 2018, 5, 031006.	4.4	12
267	Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene. Journal of Physical Chemistry C, 2019, 123, 25856-25862.	3.1	12
268	Bimodal role of fluorine atoms in fluorographene chemistry opens a simple way toward double functionalization of graphene. Carbon, 2019, 145, 251-258.	10.3	12
269	A Computational Study of the Glycine-Rich Loop of Mitochondrial Processing Peptidase. PLoS ONE, 2013, 8, e74518.	2.5	11
270	First-principles study of the mechanism of wettability transition of defective graphene. Nanotechnology, 2017, 28, 064003.	2.6	11

#	Article	IF	CITATIONS
271	Changes in Electrostatic Surface Potential of Na+/K+-ATPase Cytoplasmic Headpiece Induced by Cytoplasmic Ligand(s) Binding. Biophysical Journal, 2009, 97, 1756-1764.	0.5	10
272	The nature of bonding and electronic properties of graphene and benzene with iridium adatoms. Physical Chemistry Chemical Physics, 2014, 16, 20818-20827.	2.8	10
273	Dimerization of quercetin, Diels-Alder vs. radical-coupling approach: a joint thermodynamics, kinetics, and topological study. Journal of Molecular Modeling, 2016, 22, 190.	1.8	10
274	Tuning the UV spectrum of PAHs by means of different N-doping types taking pyrene as paradigmatic example: categorization <i>via</i> valence bond theory and high-level computational approaches. Physical Chemistry Chemical Physics, 2020, 22, 22003-22015.	2.8	10
275	Large magnetic anisotropy in an Oslr dimer anchored in defective graphene. Nanotechnology, 2021, 32, 230001.	2.6	10
276	How the Stabilization of INK4 Tumor Suppressor 3D Structure Evaluated by Quantum Chemical and Molecular Mechanics Calculations Corresponds Well with Experimental Results:Â Interplay of Association Enthalpy, Entropy, and Solvation Effects. Journal of Physical Chemistry B, 2006, 110, 4423-4429.	2.6	9
277	Chemical feasibility of the general acid/base mechanism of <i>i>glmS</i> ribozyme selfâ€eleavage. Biopolymers, 2015, 103, 550-562.	2.4	9
278	Graphene Field Effect Transistors: A Sensitive Platform for Detecting Sarin. ACS Applied Materials & Samp; Interfaces, 2021, 13, 61751-61757.	8.0	9
279	Surface energy analysis (SEA) study of hyaluronan powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 1170-1174.	4.7	8
280	Exponential repulsion improves structural predictability of molecular docking. Journal of Computational Chemistry, 2016, 37, 2485-2494.	3.3	8
281	Tuning the magnetic properties of graphene derivatives by functional group selection. Physical Chemistry Chemical Physics, 2019, 21, 12697-12703.	2.8	8
282	Singleâ€Atom Catalysis: Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene (Adv.) Tj	ETQq0 0 (O rgBT /Overl
283	Thermally induced intra-molecular transformation and metalation of free-base porphyrin on $Au(111)$ surface steered by surface confinement and ad-atoms. Nanoscale Advances, 2020, 2, 2986-2991.	4.6	8
284	Ultrafine TiO ₂ Nanoparticle Supported Nitrogenâ€Rich Graphitic Porous Carbon as an Efficient Anode Material for Potassiumâ€lon Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100042.	5.8	8
285	Flax-Derived Carbon: A Highly Durable Electrode Material for Electrochemical Double-Layer Supercapacitors. Nanomaterials, 2021, 11, 2229.	4.1	8
286	Unveiling the true band gap of fluorographene and its origins by teaming theory and experiment. Applied Surface Science, 2022, 587, 152839.	6.1	8
287	Two C-terminal ankyrin repeats form the minimal stable unit of the ankyrin repeat protein p18INK4c. Journal of Molecular Modeling, 2008, 14, 747-759.	1.8	6
288	Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics. Physical Chemistry Chemical Physics, 2015, 17, 5887-5900.	2.8	6

#	Article	IF	CITATIONS
289	Band-Edge Engineering at the Carbon Dot–TiO ₂ Interface by Substitutional Boron Doping. Journal of Physical Chemistry C, 2019, 123, 5980-5988.	3.1	6
290	Hierarchical Porous Graphene–Iron Carbide Hybrid Derived From Functionalized Graphene-Based Metal–Organic Gel as Efficient Electrochemical Dopamine Sensor. Frontiers in Chemistry, 2020, 8, 544.	3.6	6
291	Surface Energy of Black Phosphorus Alloys with Arsenic. ChemNanoMat, 2020, 6, 821-826.	2.8	6
292	Anchoring of Transition Metals to Graphene Derivatives as an Efficient Approach for Designing Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2001392.	3.7	6
293	Graphene Nanobeacons with Highâ€Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small, 2022, 18, .	10.0	6
294	Ferromagnetism: Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5139-5139.	21.0	5
295	Morphologyâ€Dependent Magnetism in Nanographene: Beyond Nanoribbons. Advanced Functional Materials, 2018, 28, 1800592.	14.9	5
296	Atomicâ€Scale Edge Morphology, Stability, and Oxidation of Singleâ€Layer 2Hâ€TaS ₂ . ChemPlusChem, 2020, 85, 2557-2564.	2.8	5
297	Ligand effects on single-electron transfer of isolated iron atoms in the gaseous complexes [(OC)mFe(OH2)n]+ (m, n=0–2, m+n=1, 2). International Journal of Mass Spectrometry, 2012, 330-332, 95-99.	1.5	4
298	Graphene: Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties (Adv. Mater. 14/2015). Advanced Materials, 2015, 27, 2407-2407.	21.0	4
299	Mole 2.5 - Tool for Detection and Analysis of Macromolecular Pores and Channels. Biophysical Journal, 2017, 112, 292a-293a.	0.5	4
300	Mapping the Chemical Space of the RNA Cleavage and Its Implications for Ribozyme Catalysis. Journal of Physical Chemistry B, 2017, 121, 10828-10840.	2.6	4
301	Octylamineâ€Modified Fluorographenes as a Versatile Platform for the Efficient Engineering of the Nonlinear Optical Properties of Fluorinated Graphenes. Advanced Photonics Research, 2020, 1, 2000014.	3.6	4
302	Surface termination of MgB ₂ unveiled by a combination of adsorption experiments and theoretical calculations. Physical Chemistry Chemical Physics, 2019, 21, 7313-7320.	2.8	3
303	OsPd bimetallic dimer pushes the limit of magnetic anisotropy in atom-sized magnets for data storage. Nanotechnology, 2022, 33, 215001.	2.6	3
304	Electrocatalytic activity for proton reduction by a covalent non-metal graphene–fullerene hybrid. Chemical Communications, 0, , .	4.1	3
305	Insenstivity to Close Contacts and Inability to Predict Protein Foldability. Journal of Biomolecular Structure and Dynamics, 2011, 28, 633-634.	3.5	2
306	Editorial [Hot Topic: Cytochromes P450: Flexibility and Plasticity - Properties Determining Substrate Preferences (Guest Editors: Michal Otyepka and Pavel Anzenbacher)]. Current Drug Metabolism, 2012, 13, 129-129.	1.2	2

#	Article	IF	CITATIONS
307	Carbon-Based Materials at Nanoscale. Journal of Nanomaterials, 2015, 2015, 1-2.	2.7	2
308	Fluorographene: Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism (Small $31/2015$). Small, 2015 , 11 , $3789-3789$.	10.0	2
309	Molecular insights from theoretical calculations explain the differences in affinity and diffusion of airborne contaminants on surfaces of hBN and graphene. Applied Surface Science, 2021, 565, 150382.	6.1	2
310	The synthesis of some polycyclic N-H acids with quinoxaline and [1,2,4]triazines. Arkivoc, 2004, 2003, 65-74.	0.5	2
311	Metabolic interactions of benzodiazepines with oxycodone ex vivo and toxicity depending on usage patterns in an animal model. British Journal of Pharmacology, 2021, , .	5 . 4	2
312	Controlled nucleation of crystallization process as an efficient tool to tune the properties of corticosteroid API. Powder Technology, 2022, , 117334.	4.2	2
313	Detection of Channels. SpringerBriefs in Biochemistry and Molecular Biology, 2016, , 59-69.	0.3	1
314	Channelsdb and Moleonline - Database and Tool for Analysis of Biomacromolecular Tunnels and Pores. Biophysical Journal, 2018, 114, 342a-343a.	0.5	1
315	Lipid bilayer position and orientation of novel carprofens, modulators of \hat{l}^3 -secretase in Alzheimer's disease. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2224-2233.	2.6	1
316	Stretchâ∈Healable Molecular Nanofibers. Advanced Theory and Simulations, 2020, 3, 2000094.	2.8	1
317	Accessibility of Grafted Functional Groups Limits Reactivity of Covalent Graphene Derivatives. Applied Surface Science, 2022, , 153792.	6.1	1
318	Structural Landmarks of the Hepatitis Delta Virus (HDV) Ribozyme. Biophysical Journal, 2011, 100, 236a.	0.5	0
319	Structure-Function Relationships Within the Hepatitis Delta Virus Ribozyme. Biophysical Journal, 2012, 102, 277a.	0.5	O
320	Biomacromolecular Fragments and Patterns. SpringerBriefs in Biochemistry and Molecular Biology, 2016, , 7-15.	0.3	0
321	Graphene: High-Performance Supercapacitors Based on a Zwitterionic Network of Covalently Functionalized Graphene with Iron Tetraaminophthalocyanine (Adv. Funct. Mater. 29/2018). Advanced Functional Materials, 2018, 28, 1870203.	14.9	0
322	Graphene: Morphology-Dependent Magnetism in Nanographene: Beyond Nanoribbons (Adv. Funct.) Tj ETQq0 0	0 rgBT/0\	verlock 10 Tf 5
323	Structural Bioinformatics Databases of General Use. SpringerBriefs in Biochemistry and Molecular Biology, 2016, , 17-30.	0.3	0
324	OsPd bimetallic dimer pushes the limit of magnetic anisotropy in atom-sized magnets for data storage. Nanotechnology, 2022, , .	2.6	0