Alison A Mcbride

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/290577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ROCK Inhibitor and Feeder Cells Induce the Conditional Reprogramming of Epithelial Cells. American Journal of Pathology, 2012, 180, 599-607.	1.9	646
2	PSORS2 Is Due to Mutations in CARD14. American Journal of Human Genetics, 2012, 90, 784-795.	2.6	365
3	The Papillomavirus E2 proteins. Virology, 2013, 445, 57-79.	1.1	314
4	The Papillomavirus Episteme: a major update to the papillomavirus sequence database. Nucleic Acids Research, 2017, 45, D499-D506.	6.5	298
5	Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. Journal of Clinical Investigation, 2010, 120, 2619-2626.	3.9	270
6	The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathogens, 2017, 13, e1006211.	2.1	257
7	The Ancient Evolutionary History of Polyomaviruses. PLoS Pathogens, 2016, 12, e1005574.	2.1	190
8	The Papillomavirus Episteme: a central resource for papillomavirus sequence data and analysis. Nucleic Acids Research, 2012, 41, D571-D578.	6.5	188
9	Brd4 Is Required for E2-Mediated Transcriptional Activation but Not Genome Partitioning of All Papillomaviruses. Journal of Virology, 2006, 80, 9530-9543.	1.5	159
10	Bovine Papillomavirus Type 1 Genomes and the E2 Transactivator Protein Are Closely Associated with Mitotic Chromatin. Journal of Virology, 1998, 72, 2079-2088.	1.5	159
11	The Papillomavirus E1 Helicase Activates a Cellular DNA Damage Response in Viral Replication Foci. Journal of Virology, 2011, 85, 8981-8995.	1.5	158
12	ICTV Virus Taxonomy Profile: Papillomaviridae. Journal of General Virology, 2018, 99, 989-990.	1.3	140
13	Snapshots: Chromatin control of viral infection. Virology, 2013, 435, 141-156.	1.1	133
14	Human papillomaviruses: diversity, infection and host interactions. Nature Reviews Microbiology, 2022, 20, 95-108.	13.6	132
15	Complete Genome Sequence of a Tenth Human Polyomavirus. Journal of Virology, 2012, 86, 10887-10887.	1.5	113
16	The Mitotic Chromosome Binding Activity of the Papillomavirus E2 Protein Correlates with Interaction with the Cellular Chromosomal Protein, Brd4. Journal of Virology, 2005, 79, 4806-4818.	1.5	112
17	Interaction of the Papillomavirus E2 Protein with Mitotic Chromosomes. Virology, 2000, 270, 124-134.	1.1	109
18	Interaction of Bovine Papillomavirus E2 Protein with Brd4 Stabilizes Its Association with Chromatin. Journal of Virology, 2005, 79, 8920-8932.	1.5	108

2

#	Article	IF	CITATIONS
19	Chapter 4 Replication and Partitioning of Papillomavirus Genomes. Advances in Virus Research, 2008, 72, 155-205.	0.9	106
20	Variations in the association of papillomavirus E2 proteins with mitotic chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1047-1052.	3.3	101
21	The effect of Rho kinase inhibition on long-term keratinocyte proliferation is rapid and conditional. Stem Cell Research and Therapy, 2014, 5, 60.	2.4	95
22	Papillomavirus Genomes Associate with BRD4 to Replicate at Fragile Sites in the Host Genome. PLoS Pathogens, 2014, 10, e1004117.	2.1	94
23	Mechanisms and strategies of papillomavirus replication. Biological Chemistry, 2017, 398, 919-927.	1.2	92
24	Binding of Bovine Papillomavirus E1 to the Origin Is Not Sufficient for DNA Replication. Virology, 1993, 193, 201-212.	1.1	89
25	Papillomaviruses Use Recombination-Dependent Replication to Vegetatively Amplify Their Genomes in Differentiated Cells. PLoS Pathogens, 2013, 9, e1003321.	2.1	79
26	Oncogenic human papillomaviruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160273.	1.8	77
27	Metagenomic Discovery of 83 New Human Papillomavirus Types in Patients with Immunodeficiency. MSphere, 2018, 3, .	1.3	75
28	HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression. PLoS Genetics, 2018, 14, e1007179.	1.5	75
29	Proteasome-Mediated Degradation of the Papillomavirus E2-TA Protein Is Regulated by Phosphorylation and Can Modulate Viral Genome Copy Number. Journal of Virology, 2000, 74, 6031-6038.	1.5	72
30	Brd4 Is Displaced from HPV Replication Factories as They Expand and Amplify Viral DNA. PLoS Pathogens, 2013, 9, e1003777.	2.1	72
31	Sp100 Provides Intrinsic Immunity against Human Papillomavirus Infection. MBio, 2013, 4, e00845-13.	1.8	71
32	Domains of the BPV-1 E1 Replication Protein Required for Origin-Specific DNA Binding and Interaction with the E2 Transactivator. Virology, 1995, 211, 385-396.	1.1	70
33	The Role of the DNA Damage Response throughout the Papillomavirus Life Cycle. Viruses, 2015, 7, 2450-2469.	1.5	69
34	Molecular Basis for Phosphorylation-Dependent, PEST-Mediated Protein Turnover. Structure, 2006, 14, 309-319.	1.6	68
35	Persistent Human Papillomavirus Infection. Viruses, 2021, 13, 321.	1.5	68
36	Tandemly Integrated HPV16 Can Form a Brd4-Dependent Super-Enhancer-Like Element That Drives Transcription of Viral Oncogenes. MBio, 2016, 7, .	1.8	66

#	Article	IF	CITATIONS
37	Partitioning Viral Genomes in Mitosis: Same Idea, Different Targets. Cell Cycle, 2006, 5, 1499-1502.	1.3	63
38	Repression of HPV16 early region transcription by the E2 protein. Virology, 2006, 351, 29-41.	1.1	55
39	Casein Kinase II Phosphorylation-induced Conformational Switch Triggers Degradation of the Papillomavirus E2 Protein. Journal of Biological Chemistry, 2004, 279, 22430-22439.	1.6	52
40	Brd4: tethering, segregation and beyond. Trends in Microbiology, 2004, 12, 527-529.	3.5	52
41	Papillomavirus E2 Proteins and the Host Brd4 Protein Associate with Transcriptionally Active Cellular Chromatin. Journal of Virology, 2009, 83, 2592-2600.	1.5	50
42	Hitchhiking on host chromatin: how papillomaviruses persist. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 820-825.	0.9	47
43	The Epstein-Barr Virus Episome Maneuvers between Nuclear Chromatin Compartments during Reactivation. Journal of Virology, 2018, 92, .	1.5	46
44	Reconstitution of papillomavirus E2-mediated plasmid maintenance in Saccharomyces cerevisiae by the Brd4 bromodomain protein. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2998-3003.	3.3	42
45	The Human Papillomavirus Type 8 E2 Tethering Protein Targets the Ribosomal DNA Loci of Host Mitotic Chromosomes. Journal of Virology, 2009, 83, 640-650.	1.5	42
46	Interaction of the Betapapillomavirus E2 Tethering Protein with Mitotic Chromosomes. Journal of Virology, 2010, 84, 543-557.	1.5	38
47	Current Understanding of the Role of the Brd4 Protein in the Papillomavirus Lifecycle. Viruses, 2013, 5, 1374-1394.	1.5	38
48	A proteomic approach to discover and compare interacting partners of papillomavirus E2 proteins from diverse phylogenetic groups. Proteomics, 2015, 15, 2038-2050.	1.3	37
49	Molecular archeological evidence in support of the repeated loss of a papillomavirus gene. Scientific Reports, 2016, 6, 33028.	1.6	36
50	The Transactivation and DNA Binding Domains of the BPV-1 E2 Protein Have Different Roles in Cooperative Origin Binding with the E1 Protein. Virology, 1996, 221, 44-53.	1.1	35
51	Embryonic mesoderm and endoderm induction requires the actions of non-embryonic Nodal-related ligands and Mxtx2. Development (Cambridge), 2011, 138, 787-795.	1.2	35
52	The SMC5/6 Complex Interacts with the Papillomavirus E2 Protein and Influences Maintenance of Viral Episomal DNA. Journal of Virology, 2018, 92, .	1.5	34
53	Brd4 Activates Early Viral Transcription upon Human Papillomavirus 18 Infection of Primary Keratinocytes. MBio, 2016, 7, .	1.8	33
54	Host cell restriction factors that limit transcription and replication of human papillomavirus. Virus Research, 2017, 231, 10-20.	1.1	32

#	Article	IF	CITATIONS
55	Phosphorylation Regulates Binding of the Human Papillomavirus Type 8 E2 Protein to Host Chromosomes. Journal of Virology, 2012, 86, 10047-10058.	1.5	29
56	Recurrent integration of human papillomavirus genomes at transcriptional regulatory hubs. Npj Genomic Medicine, 2021, 6, 101.	1.7	28
57	Sp100 colocalizes with HPV replication foci and restricts the productive stage of the infectious cycle. PLoS Pathogens, 2017, 13, e1006660.	2.1	27
58	Dimerization of the Papillomavirus E2 Protein Is Required for Efficient Mitotic Chromosome Association and Brd4 Binding. Journal of Virology, 2008, 82, 7298-7305.	1.5	25
59	An acidic amphipathic helix in the Bovine Papillomavirus E2 protein is critical for DNA replication and interaction with the E1 protein. Virology, 2005, 332, 78-88.	1.1	23
60	Conditional Mutations in the Mitotic Chromosome Binding Function of the Bovine Papillomavirus Type 1 E2 Protein. Journal of Virology, 2005, 79, 1500-1509.	1.5	23
61	Hitchhiking of Viral Genomes on Cellular Chromosomes. Annual Review of Virology, 2019, 6, 275-296.	3.0	20
62	Transient Viral DNA Replication and Repression of Viral Transcription Are Supported by the C-Terminal Domain of the Bovine Papillomavirus Type 1 E1 Protein. Journal of Virology, 1998, 72, 796-801.	1.5	20
63	Production of infectious bovine papillomavirus from cloned viral DNA by using an organotypic raft/xenograft technique. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5534-5539.	3.3	18
64	A Divergent Variant of the Eleventh Human Polyomavirus Species, Saint Louis Polyomavirus. Genome Announcements, 2013, 1, .	0.8	18
65	Expert Views on HPV Infection. Viruses, 2018, 10, 94.	1.5	17
66	Dangerous Liaisons: Long-Term Replication with an Extrachromosomal HPV Genome. Viruses, 2021, 13, 1846.	1.5	17
67	The Promise of Proteomics in the Study of Oncogenic Viruses. Molecular and Cellular Proteomics, 2017, 16, S65-S74.	2.5	15
68	Novel recombinant papillomavirus genomes expressing selectable genes. Scientific Reports, 2016, 6, 37782.	1.6	13
69	Persistence of an Oncogenic Papillomavirus Genome Requires <i>cis</i> Elements from the Viral Transcriptional Enhancer. MBio, 2017, 8, .	1.8	13
70	Histone Modifications in Papillomavirus Virion Minichromosomes. MBio, 2021, 12, .	1.8	13
71	Multiple Roles of Brd4 in the Infectious Cycle of Human Papillomaviruses. Frontiers in Molecular Biosciences, 2021, 8, 725794.	1.6	12
72	Playing with fire: consequences of human papillomavirus DNA replication adjacent to genetically unstable regions of host chromatin. Current Opinion in Virology, 2017, 26, 63-68.	2.6	10

#	Article	IF	CITATIONS
73	Spatial and Functional Organization of Human Papillomavirus Replication Foci in the Productive Stage of Infection. MBio, 2021, 12, e0268421.	1.8	10
74	Genetic analysis of the E2 transactivation domain dimerization interface from bovine papillomavirus type 1. Virology, 2013, 439, 132-139.	1.1	9
75	Human Papillomavirus Quasivirus Production and Infection of Primary Human Keratinocytes. Current Protocols in Microbiology, 2020, 57, e101.	6.5	7
76	Regulation of Human Papillomavirus 18 Genome Replication, Establishment, and Persistence by Sequences in the Viral Upstream Regulatory Region. Journal of Virology, 2021, 95, e0068621.	1.5	7
77	Human Papillomavirus Integration: Analysis by Molecular Combing and Fiberâ€FISH. Current Protocols in Microbiology, 2018, 51, e61.	6.5	5
78	Development of Keratinocyte Cell Lines Containing Extrachromosomal Human Papillomavirus Genomes. Current Protocols, 2021, 1, e235.	1.3	4
79	Detection and Genotyping of Human Papillomaviruses from Archival Formalin-Fixed Tissue Samples. Current Protocols in Microbiology, 2016, 43, 148.9.1-148.9.20.	6.5	3
80	Distribution and Functional Consequences of Somatic MAP2K1 Variants in Affected Skin Associated with Bone Lesions in Melorheostosis. Journal of Investigative Dermatology, 2021, 141, 688-692.e11.	0.3	3
81	HPV32â€related Heck's disease in a chronic graftâ€versusâ€host disease patient with longâ€term successful KTP laser treatment: A rare case report. Clinical Case Reports (discontinued), 2021, 9, e04253.	0.2	3
82	Papillomavirus DNA Replication. , 2000, 24, 341-360.		0
83	Human Papillomaviruses (Papillomaviridae). , 2019, , 493-501.		0