Mark W Blows

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2905323/publications.pdf Version: 2024-02-01

MARK W RIOWS

#	Article	IF	CITATIONS
1	Causes of variability in estimates of mutational variance from mutation accumulation experiments. Genetics, 2022, 221, .	2.9	2
2	The contribution of mutation and selection to multivariate quantitative genetic variance in an outbred population of <i>Drosophila serrata</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
3	Loss of ecologically important genetic variation in late generation hybrids reveals links between adaptation and speciation. Evolution Letters, 2020, 4, 302-316.	3.3	16
4	Mutational Pleiotropy and the Strength of Stabilizing Selection Within and Between Functional Modules of Gene Expression. Genetics, 2018, 208, 1601-1616.	2.9	14
5	Evolution of Genetic Variance during Adaptive Radiation. American Naturalist, 2018, 191, E108-E128.	2.1	59
6	Genotypic covariance between the performance of a resident species and community assembly in the field. Functional Ecology, 2018, 32, 533-544.	3.6	2
7	Environmentally induced development costs underlie fitness tradeoffs. Ecology, 2018, 99, 1391-1401.	3.2	20
8	Uneven Distribution of Mutational Variance Across the Transcriptome of <i>Drosophila serrata</i> Revealed by High-Dimensional Analysis of Gene Expression. Genetics, 2018, 209, 1319-1328.	2.9	16
9	Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory. Genetics, 2017, 206, 1271-1284.	2.9	22
10	Artificial Selection to Increase the Phenotypic Variance in <i>g</i> _{max} Fails. American Naturalist, 2017, 190, 707-723.	2.1	15
11	Sexual selection on spontaneous mutations strengthens the betweenâ€sex genetic correlation for fitness. Evolution; International Journal of Organic Evolution, 2017, 71, 2398-2409.	2.3	8
12	Heritable Micro-environmental Variance Covaries with Fitness in an Outbred Population of <i>Drosophila serrata</i> . Genetics, 2017, 206, 2185-2198.	2.9	13
13	Genetic Compatibility Underlies Benefits of Mate Choice in an External Fertilizer. American Naturalist, 2016, 187, 647-657.	2.1	12
14	Simultaneous Estimation of Additive and Mutational Genetic Variance in an Outbred Population of <i>Drosophila serrata</i> . Genetics, 2015, 201, 1239-1251.	2.9	13
15	Transcriptome-wide effects of sexual selection on the fate of new mutations. Evolution; International Journal of Organic Evolution, 2015, 69, 2905-2916.	2.3	2
16	Dominance Genetic Variance for Traits Under Directional Selection in <i>Drosophila serrata</i> . Genetics, 2015, 200, 371-384.	2.9	21
17	The Phenome-Wide Distribution of Genetic Variance. American Naturalist, 2015, 186, 15-30.	2.1	26
18	The distribution of genetic variance across phenotypic space and the response to selection. Molecular Ecology, 2015, 24, 2056-2072.	3.9	58

#	Article	IF	CITATIONS
19	Pleiotropic Mutations Are Subject to Strong Stabilizing Selection. Genetics, 2014, 197, 1051-1062.	2.9	38
20	The Nature and Extent of Mutational Pleiotropy in Gene Expression of Male <i>Drosophila serrata</i> . Genetics, 2014, 196, 911-921.	2.9	46
21	The genetic covariance between life cycle stages separated by metamorphosis. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141091.	2.6	44
22	Female mate choice predicts paternity success in the absence of additive genetic variance for other female paternity bias mechanisms in <i><scp>D</scp>rosophila serrata</i> . Journal of Evolutionary Biology, 2014, 27, 2568-2572.	1.7	3
23	THE CONTRIBUTION OF SPONTANEOUS MUTATIONS TO THERMAL SENSITIVITY CURVE VARIATION IN <i>DROSOPHILA SERRATA</i> . Evolution; International Journal of Organic Evolution, 2014, 68, 1824-1837.	2.3	19
24	ESTIMATING UNCERTAINTY IN MULTIVARIATE RESPONSES TO SELECTION. Evolution; International Journal of Organic Evolution, 2014, 68, 1188-1196.	2.3	44
25	Evolutionary Constraints in High-Dimensional Trait Sets. American Naturalist, 2014, 184, 119-131.	2.1	55
26	Comparing G: multivariate analysis of genetic variation in multiple populations. Heredity, 2014, 112, 21-29.	2.6	107
27	Relative influence of resident species and environmental variation on community assembly. Marine Ecology - Progress Series, 2014, 499, 103-113.	1.9	5
28	JOINT ALLELIC EFFECTS ON FITNESS AND METRIC TRAITS. Evolution; International Journal of Organic Evolution, 2013, 67, 1131-1142.	2.3	15
29	Evolutionary optimum for male sexual traits characterized using the multivariate Robertson-Price Identity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10414-10419.	7.1	27
30	Pleiotropy, apparent stabilizing selection and uncovering fitness optima. Trends in Ecology and Evolution, 2011, 26, 22-29.	8.7	51
31	REDUCING MUTATION LOAD THROUGH SEXUAL SELECTION ON MALES. Evolution; International Journal of Organic Evolution, 2011, 65, 2816-2829.	2.3	59
32	HIGH-DIMENSIONAL VARIANCE PARTITIONING REVEALS THE MODULAR GENETIC BASIS OF ADAPTIVE DIVERGENCE IN GENE EXPRESSION DURING REPRODUCTIVE CHARACTER DISPLACEMENT. Evolution; International Journal of Organic Evolution, 2011, 65, 3126-3137.	2.3	15
33	Natural selection stops the evolution of male attractiveness. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3659-3664.	7.1	82
34	SEXUAL CONFLICT AND THE MAINTENANCE OF MULTIVARIATE GENETIC VARIATION. Evolution; International Journal of Organic Evolution, 2010, 64, 1697-1703.	2.3	31
35	EXPERIMENTAL EVIDENCE FOR THE EVOLUTION OF INDIRECT GENETIC EFFECTS: CHANGES IN THE INTERACTION EFFECT COEFFICIENT, PSI (Î), DUE TO SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2010, 64, 1849-1856.	2.3	58
36	EVOLVABILITY OF INDIVIDUAL TRAITS IN A MULTIVARIATE CONTEXT: PARTITIONING THE ADDITIVE GENETIC VARIANCE INTO COMMON AND SPECIFIC COMPONENTS. Evolution; International Journal of Organic Evolution, 2010, 64, 1899-911.	2.3	26

#	Article	IF	CITATIONS
37	QUANTITATIVE GENETICS OF FEMALE MATE PREFERENCES IN AN ANCESTRAL AND A NOVEL ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2010, 64, 2758-2766.	2.3	30
38	Ontogenetic Change in Genetic Variance in Size Depends on Growth Environment. American Naturalist, 2010, 175, 640-649.	2.1	24
39	The Contribution of Selection and Genetic Constraints to Phenotypic Divergence. American Naturalist, 2010, 175, 186-196.	2.1	121
40	Sexually antagonistic genetic variance for fitness in an ancestral and a novel environment. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2009-2014.	2.6	68
41	Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1567-1578.	4.0	88
42	An expressed sequence tag (EST) library for Drosophila serrata, a model system for sexual selection and climatic adaptation studies. BMC Genomics, 2009, 10, 40.	2.8	26
43	ASYMMETRY OF GENETIC VARIATION IN FITNESS-RELATED TRAITS: APPARENT STABILIZING SELECTION ON <i>g</i> max. Evolution; International Journal of Organic Evolution, 2009, 63, 2838-2847.	2.3	23
44	The diversification of mate preferences by natural and sexual selection. Journal of Evolutionary Biology, 2009, 22, 1608-1615.	1.7	45
45	Spherical Cows Grazing in Flatland: Constraints to Selection and Adaptation. , 2009, , 83-101.		39
46	Abundant Genetic Variation + Strong Selection = Multivariate Genetic Constraints: A Geometric View of Adaptation. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 41-59.	8.3	521
47	THE EVOLUTION OF REPRODUCTIVE CHARACTER DISPLACEMENT CONFLICTS WITH HOW SEXUAL SELECTION OPERATES WITHIN A SPECIES. Evolution; International Journal of Organic Evolution, 2008, 62, 1192-1203.	2.3	73
48	QSTMEETS THE G MATRIX: THE DIMENSIONALITY OF ADAPTIVE DIVERGENCE IN MULTIPLE CORRELATED QUANTITATIVE TRAITS. Evolution; International Journal of Organic Evolution, 2008, 62, 1437-1449.	2.3	62
49	AN EVOLUTIONARY LIMIT TO MALE MATING SUCCESS. Evolution; International Journal of Organic Evolution, 2008, 62, 1528-1537.	2.3	28
50	ESTIMATING NONLINEAR SELECTION GRADIENTS USING QUADRATIC REGRESSION COEFFICIENTS: DOUBLE OR NOTHING?. Evolution; International Journal of Organic Evolution, 2008, 62, 2435-2440.	2.3	425
51	Genetic Constraints and the Evolution of Display Trait Sexual Dimorphism by Natural and Sexual Selection. American Naturalist, 2008, 171, 22-34.	2.1	111
52	Comparing Complex Fitness Surfaces: Amongâ€Population Variation in Mutual Sexual Selection inDrosophila serrata. American Naturalist, 2008, 171, 443-454.	2.1	49
53	Pedigree-free animal models: the relatedness matrix reloaded. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 639-647.	2.6	76
54	Genetic Analysis of Female Preference Functions as Functionâ€Valued Traits. American Naturalist, 2008, 172, 194-202.	2.1	39

#	Article	IF	CITATIONS
55	Are Traits That Experience Reinforcement Also Under Sexual Selection?. American Naturalist, 2007, 170, 409-420.	2.1	67
56	GENETIC MECHANISMS OF POLLUTION RESISTANCE IN A MARINE INVERTEBRATE. Ecological Applications, 2007, 17, 2290-2297.	3.8	39
57	Natural Genetic Variation in Cuticular Hydrocarbon Expression in Male and Female Drosophila melanogaster. Genetics, 2007, 175, 1465-1477.	2.9	74
58	Reconciling Strong Stabilizing Selection with the Maintenance of Genetic Variation in a Natural Population of Black Field Crickets (Teleogryllus commodus). Genetics, 2007, 177, 875-880.	2.9	68
59	Predicting the age of mosquitoes using transcriptional profiles. Nature Protocols, 2007, 2, 2796-2806.	12.0	38
60	A tale of two matrices: multivariate approaches in evolutionary biology. Journal of Evolutionary Biology, 2007, 20, 1-8.	1.7	302
61	Complexity for complexity's sake?. Journal of Evolutionary Biology, 2007, 20, 39-44.	1.7	22
62	Large body size in an island-dwelling bird: a microevolutionary analysis. Journal of Evolutionary Biology, 2007, 20, 639-649.	1.7	17
63	Male choice generates stabilizing sexual selection on a female fecundity correlate. Journal of Evolutionary Biology, 2007, 20, 1745-1750.	1.7	43
64	THE PHENOTYPIC AND GENETIC COVARIANCE STRUCTURE OF DROSPHILID WINGS. Evolution; International Journal of Organic Evolution, 2007, 61, 902-911.	2.3	72
65	The Depletion of Genetic Variance by Sexual Selection. Current Biology, 2007, 17, 528-532.	3.9	95
66	THE ROLES OF NATURAL AND SEXUAL SELECTION DURING ADAPTATION TO A NOVEL ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2006, 60, 2218-2225.	2.3	104
67	Measuring natural and sexual selection on breeding values of male display traits in Drosophila serrata. Journal of Evolutionary Biology, 2006, 19, 35-41.	1.7	17
68	Predator-induced phenotypic plasticity in tadpoles: extension or innovation?. Journal of Evolutionary Biology, 2006, 19, 450-458.	1.7	23
69	Substantial changes in the genetic basis of tadpole morphology of Rana lessonae in the presence of predators. Journal of Evolutionary Biology, 2006, 19, 1813-1818.	1.7	23
70	Dissecting the complex genetic basis of mate choice. Nature Reviews Genetics, 2006, 7, 681-692.	16.3	90
71	Age determination in individual wild-caught Drosophila serratausing pteridine concentration. Journal of Experimental Biology, 2006, 209, 3155-3163.	1.7	26
72	Determining the Effective Dimensionality of the Genetic Variance–Covariance Matrix. Genetics, 2006, 173, 1135-1144.	2.9	129

#	Article	IF	CITATIONS
73	THE ROLES OF NATURAL AND SEXUAL SELECTION DURING ADAPTATION TO A NOVEL ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2006, 60, 2218.	2.3	26
74	The use of transcriptional profiles to predict adult mosquito age under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18060-18065.	7.1	99
75	The roles of natural and sexual selection during adaptation to a novel environment. Evolution; International Journal of Organic Evolution, 2006, 60, 2218-25.	2.3	34
76	Phenotypic Divergence along Lines of Genetic Variance. American Naturalist, 2005, 165, 32-43.	2.1	140
77	EXPERIMENTAL EVIDENCE FOR MULTIVARIATE STABILIZING SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2005, 59, 871-880.	2.3	186
78	Genetic covariance between indices of body condition and immunocompetence in a passerine bird. BMC Evolutionary Biology, 2005, 5, 61.	3.2	30
79	EXPERIMENTAL EVIDENCE FOR MULTIVARIATE STABILIZING SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2005, 59, 871.	2.3	22
80	Divergent Selection and the Evolution of Signal Traits and Mating Preferences. PLoS Biology, 2005, 3, e368.	5.6	167
81	Genetic variance in female condition predicts indirect genetic variance in male sexual display traits. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6045-6050.	7.1	135
82	A REASSESSMENT OF GENETIC LIMITS TO EVOLUTIONARY CHANGE. Ecology, 2005, 86, 1371-1384.	3.2	532
83	Contrasting Mutual Sexual Selection on Homologous Signal Traits in Drosophila serrata. American Naturalist, 2005, 165, 281-289.	2.1	235
84	Experimental evidence for multivariate stabilizing sexual selection. Evolution; International Journal of Organic Evolution, 2005, 59, 871-80.	2.3	59
85	MULTIVARIATE QUANTITATIVE GENETICS AND THE LEK PARADOX: GENETIC VARIANCE IN MALE SEXUALLY SELECTED TRAITS OF DROSOPHILA SERRATA UNDER FIELD CONDITIONS. Evolution; International Journal of Organic Evolution, 2004, 58, 2754.	2.3	30
86	The Genetic Covariance Among Clinal Environments After Adaptation to an Environmental Gradient in Drosophila serrata. Genetics, 2004, 167, 1281-1291.	2.9	29
87	Orientation of the Genetic Varianceâ€Covariance Matrix and the Fitness Surface for Multiple Male Sexually Selected Traits. American Naturalist, 2004, 163, 329-340.	2.1	237
88	MULTIVARIATE QUANTITATIVE GENETICS AND THE LEK PARADOX: GENETIC VARIANCE IN MALE SEXUALLY SELECTED TRAITS OF DROSOPHILA SERRATA UNDER FIELD CONDITIONS. Evolution; International Journal of Organic Evolution, 2004, 58, 2754-2762.	2.3	101
89	Cuticular hydrocarbons of Drosophila birchii and D. serrata: identification and role in mate choice in D. serrata. Journal of Chemical Ecology, 2003, 29, 961-976.	1.8	101
90	Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids?. Oikos, 2003, 100, 563-573.	2.7	60

#	Article	IF	CITATIONS
91	ADAPTATION OF RAINBOW FISH TO LAKE AND STREAM HABITATS. Evolution; International Journal of Organic Evolution, 2003, 57, 104-118.	2.3	110
92	SIGNAL TRAIT SEXUAL DIMORPHISM AND MUTUAL SEXUAL SELECTION IN DROSOPHILA SERRATA. Evolution; International Journal of Organic Evolution, 2003, 57, 2326-2334.	2.3	104
93	EXPLORING COMPLEX FITNESS SURFACES: MULTIPLE ORNAMENTATION AND POLYMORPHISM IN MALE GUPPIES. Evolution; International Journal of Organic Evolution, 2003, 57, 1622-1630.	2.3	146
94	EVOLUTION OF ADDITIVE AND NONADDITIVE GENETIC VARIANCE IN DEVELOPMENT TIME ALONG A CLINE IN DROSOPHILA SERRATA. Evolution; International Journal of Organic Evolution, 2003, 57, 1846-1851.	2.3	31
95	Measuring Nonlinear Selection. American Naturalist, 2003, 162, 815-820.	2.1	268
96	Genetic Constraints on the Evolution of Mate Recognition under Natural Selection. American Naturalist, 2003, 161, 240-253.	2.1	85
97	SIGNAL TRAIT SEXUAL DIMORPHISM AND MUTUAL SEXUAL SELECTION IN DROSOPHILA SERRATA. Evolution; International Journal of Organic Evolution, 2003, 57, 2326.	2.3	13
98	ADAPTATION OF RAINBOW FISH TO LAKE AND STREAM HABITATS. Evolution; International Journal of Organic Evolution, 2003, 57, 104.	2.3	4
99	EXPLORING COMPLEX FITNESS SURFACES: MULTIPLE ORNAMENTATION AND POLYMORPHISM IN MALE GUPPIES. Evolution; International Journal of Organic Evolution, 2003, 57, 1622.	2.3	17
100	Interaction between natural and sexual selection during the evolution of mate recognition. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1113-1118.	2.6	97
101	Positive genetic correlation between female preference and offspring fitness. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2215-2219.	2.6	94
102	Evolutionary Experiments on Mate Recognition in the Drosophila Serrata Species Complex. Genetica, 2002, 116, 239-250.	1.1	11
103	Evolutionary experiments on mate recognition in the Drosophila serrata species complex. Contemporary Issues in Genetics and Evolution, 2002, , 239-250.	0.9	2
104	Evolutionary experiments on mate recognition in the Drosophila serrata species complex. Genetica, 2002, 116, 239-50.	1.1	2
105	Natural Selection and the Reinforcement of Mate Recognition. Science, 2000, 290, 519-521.	12.6	285
106	Lifeâ€History Consequences of Divergent Selection on Egg Size inDrosophila melanogaster. American Naturalist, 1999, 154, 333-340.	2.1	61
107	Evolution of the genetic covariance between male and female components of mate recognition: an experimental test. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2169-2174.	2.6	42
108	Evidence for an Association between Nonadditive Genetic Variation and Extreme Expression of a Trait. American Naturalist, 1996, 148, 576-587.	2.1	13

#	Article	IF	CITATIONS
109	Species borders: ecological and evolutionary perspectives. Trends in Ecology and Evolution, 1994, 9, 223-227.	8.7	468
110	The Genetics of Central and Marginal Populations of Drosophila serrata. II. Hybrid Breakdown in Fitness Components as a Correlated Response to Selection for Desication Resistance. Evolution; International Journal of Organic Evolution, 1993, 47, 1271.	2.3	14
111	The Genetics of Central and Marginal Populations of Drosophila serrata. I. Genetic Variation for Stress Resistance and Species Borders. Evolution; International Journal of Organic Evolution, 1993, 47, 1255.	2.3	45
112	THE GENETICS OF CENTRAL AND MARGINAL POPULATIONS OF <i>DROSOPHILA SERRATA. </i> I. GENETIC VARIATION FOR STRESS RESISTANCE AND SPECIES BORDERS. Evolution; International Journal of Organic Evolution, 1993, 47, 1255-1270.	2.3	75
113	THE GENETICS OF CENTRAL AND MARGINAL POPULATIONS OF <i>DROSOPHILA SERRATA. </i> II. HYBRID BREAKDOWN IN FITNESS COMPONENTS AS A CORRELATED RESPONSE TO SELECTION FOR DESICCATION RESISTANCE. Evolution; International Journal of Organic Evolution, 1993, 47, 1271-1285.	2.3	14