List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/290506/publications.pdf Version: 2024-02-01

IMPE RADIOS

#	Article	IF	CITATIONS
1	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	5.1	32
2	Eccentricity estimate for black hole mergers with numerical relativity simulations. Nature Astronomy, 2022, 6, 344-349.	10.1	89
3	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. Physical Review D, 2022, 105, .	4.7	31
4	Generalized approach to matched filtering using neural networks. Physical Review D, 2022, 105, .	4.7	14
5	Can Stellar-mass Black Hole Growth Disrupt Disks of Active Galactic Nuclei? The Role of Mechanical Feedback. Astrophysical Journal, 2022, 927, 41.	4.5	23
6	AGN as potential factories for eccentric black hole mergers. Nature, 2022, 603, 237-240.	27.8	67
7	Probing the dark Solar system: detecting binary asteroids with a space-based interferometric asteroid explorer. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3738-3753.	4.4	3
8	Ancestral Black Holes of Binary Merger GW190521. Astrophysical Journal Letters, 2022, 929, L1.	8.3	9
9	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	4.5	15
10	Search for binary black hole mergers in the third observing run of Advanced LIGO-Virgo using coherent WaveBurst enhanced with machine learning. Physical Review D, 2022, 105, .	4.7	9
11	GeV Signatures of Short Gamma-Ray Bursts in Active Galactic Nuclei. Astrophysical Journal, 2022, 932, 80.	4.5	8
12	Multi-messenger Astrophysics with the Highest Energy Counterparts of Gravitational Waves. , 2022, , 993-1018.		0
13	Tidal Disruption on Stellar-mass Black Holes in Active Galactic Nuclei. Astrophysical Journal Letters, 2022, 933, L28.	8.3	13
14	Eccentric Black Hole Mergers in Active Galactic Nuclei. Astrophysical Journal Letters, 2021, 907, L20.	8.3	62
15	Multi-messenger Astrophysics with the Highest Energy Counterparts of Gravitational Waves. , 2021, , 1-26.		1
16	Search for Black Hole Merger Families. Astrophysical Journal Letters, 2021, 907, L48.	8.3	9
17	Measuring the Hubble Constant with GW190521 as an Eccentric black hole Merger and Its Potential Electromagnetic Counterpart. Astrophysical Journal Letters, 2021, 908, L34.	8.3	16
18	Search for Radio Remnants of Nearby Off-axis Gamma-Ray Bursts in a Sample of Swift/BAT Events. Astrophysical Journal, 2021, 908, 63.	4.5	5

#	Article	IF	CITATIONS
19	Mass-gap Mergers in Active Galactic Nuclei. Astrophysical Journal, 2021, 908, 194.	4.5	86
20	How to Search for Multiple Messengers—A General Framework Beyond Two Messengers. Astrophysical Journal, 2021, 908, 216.	4.5	5
21	Swift Follow-up Observations of Gravitational-wave and High-energy Neutrino Coincident Signals. Astrophysical Journal, 2021, 909, 126.	4.5	5
22	Where Binary Neutron Stars Merge: Predictions from IllustrisTNG. Astrophysical Journal, 2021, 909, 207.	4.5	4
23	IceCube-Gen2: the window to the extreme Universe. Journal of Physics G: Nuclear and Particle Physics, 2021, 48, 060501.	3.6	204
24	Observing an intermediate-mass black hole GW190521 with minimal assumptions. Physical Review D, 2021, 103, .	4.7	19
25	Cosmic Neutrinos from Temporarily Gamma-suppressed Blazars. Astrophysical Journal Letters, 2021, 911, L18.	8.3	24
26	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
27	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
28	Accretion-Induced Collapse of Neutron Stars in the Disks of Active Galactic Nuclei. Astrophysical Journal, 2021, 915, 10.	4.5	27
29	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	8.9	1,097
30	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	4.7	192
31	Optimization of model independent gravitational wave search for binary black hole mergers using machine learning. Physical Review D, 2021, 104, .	4.7	13
32	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
33	Outflow Bubbles from Compact Binary Mergers Embedded in Active Galactic Nuclei: Cavity Formation and the Impact on Electromagnetic Counterparts. Astrophysical Journal, 2021, 916, 111.	4.5	24
34	Signatures of hierarchical mergers in black hole spin and mass distribution. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3362-3380.	4.4	36
35	An Archival Search for Neutron-star Mergers in Gravitational Waves and Very-high-energy Gamma Rays. Astrophysical Journal, 2021, 918, 66.	4.5	4
36	Detection of LIGO-Virgo binary black holes in the pair-instability mass gap. Physical Review D, 2021, 104, .	4.7	7

#	Article	IF	CITATIONS
37	Black Hole Mergers of AGN Origin in LIGO–Virgo's O1–O3a Observing Periods. Astrophysical Journal Letters, 2021, 920, L42.	8.3	27
38	The IceCube Pie Chart: Relative Source Contributions to the Cosmic Neutrino Flux. Astrophysical Journal, 2021, 921, 45.	4.5	15
39	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	19
40	Characterizing the Observation Bias in Gravitational-wave Detections and Finding Structured Population Properties. Astrophysical Journal, 2021, 922, 258.	4.5	13
41	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
42	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
43	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
44	lceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-wave Transient Catalog. Astrophysical Journal Letters, 2020, 898, L10.	8.3	30
45	Have hierarchical three-body mergers been detected by LIGO/Virgo?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 498, L46-L52.	3.3	10
46	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> stretchy="false">⊙</mml:mtext></mml:mrow>. Physical Review</mml:math 	ıml m text;	∙ <nanationsub></nanationsub>
47	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
48	Constraining Black Hole Populations in Globular Clusters Using Microlensing: Application to Omega Centauri. Astrophysical Journal Letters, 2020, 894, L9.	8.3	2
49	GW170817A as a Hierarchical Black Hole Merger. Astrophysical Journal Letters, 2020, 890, L20.	8.3	36
50	Optimal gravitational-wave follow-up tiling strategies using a genetic algorithm. Physical Review D, 2020, 101, .	4.7	1
51	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
52	How would a nearby kilonova look on camera?. American Journal of Physics, 2020, 88, 568-572.	0.7	0
53	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
54	Constraining the fraction of core-collapse supernovae harbouring choked jets with high-energy neutrinos. Monthly Notices of the Royal Astronomical Society, 2020, 492, 843-847.	4.4	12

#	Article	IF	CITATIONS
55	Cosmic Evolution of Stellar-mass Black Hole Merger Rate in Active Galactic Nuclei. Astrophysical Journal, 2020, 896, 138.	4.5	26
56	Efficient gravitational-wave glitch identification from environmental data through machine learning. Physical Review D, 2020, 101, .	4.7	29
57	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
58	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
59	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
60	Neutrino emission upper limits with maximum likelihood estimators for joint astrophysical neutrino searches with large sky localizations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 016-016.	5.4	6
61	Spin Evolution of Stellar-mass Black Hole Binaries in Active Galactic Nuclei. Astrophysical Journal, 2020, 899, 26.	4.5	75
62	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
63	Black Hole Formation in the Lower Mass Gap through Mergers and Accretion in AGN Disks. Astrophysical Journal Letters, 2020, 901, L34.	8.3	61
64	FIRST J1419+3940 as the First Observed Radio Flare from a Neutron Star Merger. Astrophysical Journal Letters, 2020, 902, L23.	8.3	5
65	Recurrent Neutrino Emission from Supermassive Black Hole Mergers. Astrophysical Journal Letters, 2020, 905, L13.	8.3	11
66	Can we use next-generation gravitational wave detectors for terrestrial precision measurements of Shapiro delay?. Classical and Quantum Gravity, 2020, 37, 205005.	4.0	4
67	Early Solar System r-process Abundances Limit Collapsar Origin. Astrophysical Journal Letters, 2019, 881, L4.	8.3	13
68	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
69	Localization of binary black hole mergers with known inclination. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4459-4463.	4.4	14
70	Gravitational-wave follow-up with CTA after the detection of GRBs in the TeV energy domain. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3476-3482.	4.4	10
71	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
72	Bayesian multimessenger search method for common sources of gravitational waves and high-energy neutrinos. Physical Review D, 2019, 100, .	4.7	18

#	Article	IF	CITATIONS
73	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
74	Hierarchical Black Hole Mergers in Active Galactic Nuclei. Physical Review Letters, 2019, 123, 181101.	7.8	167
75	Ram-pressure Stripping of a Kicked Hill Sphere: Prompt Electromagnetic Emission from the Merger of Stellar Mass Black Holes in an AGN Accretion Disk. Astrophysical Journal Letters, 2019, 884, L50.	8.3	95
76	High-Energy Multimessenger Transient Astrophysics. Annual Review of Nuclear and Particle Science, 2019, 69, 477-506.	10.2	40
77	AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers. Astrophysical Journal, 2019, 876, 122.	4.5	103
78	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
79	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
80	Multimessenger Implications of AT2018cow: High-energy Cosmic-Ray and Neutrino Emissions from Magnetar-powered Superluminous Transients. Astrophysical Journal, 2019, 878, 34.	4.5	30
81	Radio forensics could unmask nearby off-axis gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4150-4159.	4.4	12
82	A nearby neutron-star merger explains the actinide abundances in the early Solar System. Nature, 2019, 569, 85-88.	27.8	28
83	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
84	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
85	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
86	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Physical Review D, 2019, 99, .	4.7	77
87	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
88	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
89	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
90	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94

#	Article	IF	CITATIONS
91	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
92	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Physical Review D, 2018, 97, .	4.7	104
93	Infused ice can multiply IceCube's sensitivity. Nature Communications, 2018, 9, 1236.	12.8	0
94	Transejecta high-energy neutrino emission from binary neutron star mergers. Physical Review D, 2018, 98, .	4.7	46
95	A gut microbial factor modulates locomotor behaviour in Drosophila. Nature, 2018, 563, 402-406.	27.8	199
96	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
97	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
98	Strategies for the follow-up of gravitational wave transients with the Cherenkov Telescope Array. Monthly Notices of the Royal Astronomical Society, 2018, 477, 639-647.	4.4	9
99	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
100	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
101	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
102	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
103	Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei. Astrophysical Journal, 2017, 835, 165.	4.5	371
104	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
105	Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers. Nature Communications, 2017, 8, 831.	12.8	34
106	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
107	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
108	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314

#	Article	IF	CITATIONS
109	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
110	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
111	Prospects of establishing the origin of cosmic neutrinos using source catalogs. Physical Review D, 2017, 96, .	4.7	11
112	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
113	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
114	Environmental Stress Causes Lethal Neuro-Trauma during Asymptomatic Viral Infections. Cell Host and Microbe, 2017, 22, 48-60.e5.	11.0	5
115	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
116	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
117	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
118	Multimessenger Prospects with Gravitational Waves and Neutrinos after LIGO's First Discovery. Journal of Physics: Conference Series, 2017, 888, 012001.	0.4	0
119	JAMES WEBB SPACE TELESCOPE CAN DETECT KILONOVAE IN GRAVITATIONAL WAVE FOLLOW-UP SEARCH. Astrophysical Journal, 2016, 816, 61.	4.5	15
120	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
121	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
122	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
123	MULTI-MESSENGER TESTS FOR FAST-SPINNING NEWBORN PULSARS EMBEDDED IN STRIPPED-ENVELOPE SUPERNOVAE. Astrophysical Journal, 2016, 818, 94.	4.5	53
124	Detector optimization figures-of-merit for IceCube's high-energy extension. Astroparticle Physics, 2016, 75, 55-59.	4.3	2
125	A population of short-period variable quasars from PTF as supermassive black hole binary candidates. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2145-2171.	4.4	168
126	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210

#	Article	IF	CITATIONS
127	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
128	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
129	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
130	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 2016, 93, .	4.7	286
131	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
132	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
133	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
134	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
135	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
136	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
137	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
138	Novae as Tevatrons: prospects for CTA and IceCube. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1786-1795.	4.4	33
139	Beyond the Horizon Distance: LIGO-Virgo can Boost Gravitational-Wave Detection Rates by Exploiting the Mass Distribution of Neutron Stars. Physical Review Letters, 2015, 115, 231101.	7.8	6
140	GALAXY SURVEY ON THE FLY: PROSPECTS OF RAPID GALAXY CATALOGING TO AID THE ELECTROMAGNETIC FOLLOW-UP OF GRAVITATIONAL WAVE OBSERVATIONS. Astrophysical Journal Letters, 2015, 801, L1.	8.3	23
141	Catalogue of isolated emission episodes in gamma-ray bursts from Fermi, Swift and BATSE. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2624-2633.	4.4	14
142	GAMMA-RAY AND HARD X-RAY EMISSION FROM PULSAR-AIDED SUPERNOVAE AS A PROBE OF PARTICLE ACCELERATION IN EMBRYONIC PULSAR WIND NEBULAE. Astrophysical Journal, 2015, 805, 82.	4.5	63
143	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
144	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929

#	Article	IF	CITATIONS
145	Quantification of gait parameters in freely walking rodents. BMC Biology, 2015, 13, 50.	3.8	77
146	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
147	GRAVITATIONAL WAVE AND HIGH ENERGY NEUTRINO MULTIMESSENGER SEARCHES. , 2015, , .		0
148	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
149	Cherenkov Telescope Array is well suited to follow up gravitational-wave transients. Monthly Notices of the Royal Astronomical Society, 2014, 443, 738-749.	4.4	22
150	GeV neutrinos from collisional heating in GRBs: Detection prospects with IceCube-DeepCore. , 2014, , .		0
151	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
152	Can a single high-energy neutrino from gamma-ray bursts be a discovery?. Physical Review D, 2014, 90, .	4.7	5
153	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
154	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
155	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
156	Kinematic Responses to Changes in Walking Orientation and Gravitational Load in Drosophila melanogaster. PLoS ONE, 2014, 9, e109204.	2.5	39
157	<i>Colloquium</i> : Multimessenger astronomy with gravitational waves and high-energy neutrinos. Reviews of Modern Physics, 2013, 85, 1401-1420.	45.6	76
158	Detection Prospects for GeV Neutrinos from Collisionally Heated Gamma-ray Bursts with IceCube/DeepCore. Physical Review Letters, 2013, 110, 241101.	7.8	41
159	How gravitational-wave observations can shape the gamma-ray burst paradigm. Classical and Quantum Gravity, 2013, 30, 123001.	4.0	91
160	Gas Cloud G2 Can Illuminate the Black Hole Population Near the Galactic Center. Physical Review Letters, 2013, 110, 221102.	7.8	20
161	The Astrophysical Multimessenger Observatory Network (AMON). Astroparticle Physics, 2013, 45, 56-70.	4.3	83
162	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	32

#	Article	IF	CITATIONS
163	Detecting long-duration narrow-band gravitational wave transients associated with soft gamma repeater quasiperiodic oscillations. Physical Review D, 2013, 87, .	4.7	10
164	Multimessenger science reach and analysis method for common sources of gravitational waves and high-energy neutrinos. Physical Review D, 2012, 85, .	4.7	32
165	Probing the structure of jet-driven core-collapse supernova and long gamma-ray burst progenitors with high-energy neutrinos. Physical Review D, 2012, 86, .	4.7	24
166	Multimessenger Sources of Gravitational Waves and High-energy Neutrinos: Science Reach and Analysis Method. Journal of Physics: Conference Series, 2012, 363, 012022.	0.4	3
167	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	5.1	75
168	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
169	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	4.7	48
170	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
171	Opportunity to test non-Newtonian gravity using interferometric sensors with dynamic gravity field generators. Physical Review D, 2011, 84, .	4.7	7
172	Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. Astroparticle Physics, 2011, 35, 1-7.	4.3	69
173	Observational Constraints on Multimessenger Sources of Gravitational Waves and High-Energy Neutrinos. Physical Review Letters, 2011, 107, 251101.	7.8	36
174	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
175	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
176	JOINT SEARCHES BETWEEN GRAVITATIONAL-WAVE INTERFEROMETERS AND HIGH-ENERGY NEUTRINO TELESCOPES: SCIENCE REACH AND ANALYSIS STRATEGIES. International Journal of Modern Physics D, 2009, 18, 1655-1659.	2.1	23
177	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	20.1	971
178	Fluctuation scaling in complex systems: Taylor's law and beyond1. Advances in Physics, 2008, 57, 89-142.	14.4	257