Weiping Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2904928/publications.pdf

Version: 2024-02-01

8749 19169 20,173 325 75 118 citations h-index g-index papers 345 345 345 17262 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Weakly Coordinating Directing Groups for Ruthenium(II)―Catalyzed CH Activation. Advanced Synthesis and Catalysis, 2014, 356, 1461-1479.	2.1	702
2	Manganese-Catalyzed C–H Activation. ACS Catalysis, 2016, 6, 3743-3752.	5 . 5	525
3	Enantioselectivity in environmental safety of current chiral insecticides. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 701-706.	3.3	444
4	Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio) Tj ETQq(0 0 o rgBT 4.2	/Oyerlock 10
5	Iron-Catalyzed Carbonylation-Peroxidation of Alkenes with Aldehydes and Hydroperoxides. Journal of the American Chemical Society, 2011, 133, 10756-10759.	6.6	286
6	Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel. Water Research, 2011, 45, 5200-5210.	5.3	282
7	Oxidative Removal of Bisphenol A by Manganese Dioxide: Efficacy, Products, and Pathways. Environmental Science & Environmental	4.6	272
8	Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range. Applied Catalysis B: Environmental, 2017, 201, 232-240.	10.8	266
9	Status of metal accumulation in farmland soils across China: From distribution to risk assessment. Environmental Pollution, 2013, 176, 55-62.	3.7	243
10	Status of phthalate esters contamination in agricultural soils across China and associated health risks. Environmental Pollution, 2014, 195, 16-23.	3.7	219
11	Enantioselectivity in environmental risk assessment of modern chiral pesticides. Environmental Pollution, 2010, 158, 2371-2383.	3.7	209
12	Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquatic Toxicology, 2009, 94, 56-61.	1.9	196
13	Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquatic Toxicology, 2010, 99, 405-412.	1.9	192
14	Cypermethrin has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish (Danio rerio). Chemosphere, 2011, 82, 398-404.	4.2	188
15	Particle Size-Specific Distributions and Preliminary Exposure Assessments of Organophosphate Flame Retardants in Office Air Particulate Matter. Environmental Science & Enviro	4.6	187
16	Cobalt(III)â€Catalyzed CH/NO Functionalizations: Isohypsic Access to Isoquinolines. Chemistry - A European Journal, 2015, 21, 15525-15528.	1.7	180
17	Manganese(I)â€Catalyzed Substitutive Câ^'H Allylation. Angewandte Chemie - International Edition, 2016, 55, 7747-7750.	7.2	178
18	Action mechanisms of acetolactate synthase-inhibiting herbicides. Pesticide Biochemistry and Physiology, 2007, 89, 89-96.	1.6	174

#	Article	IF	CITATIONS
19	Manganeseâ€Catalyzed Synthesis of <i>cis</i> à€Î²â€Amino Acid Esters through Organometallic Cï₺¿H Activation of Ketimines. Angewandte Chemie - International Edition, 2015, 54, 4092-4096.	7.2	170
20	Effect of endocrine disrupting chemicals on the transcription of genes related to the innate immune system in the early developmental stage of zebrafish (Danio rerio). Fish and Shellfish Immunology, 2010, 28, 854-861.	1.6	169
21	Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations. Accounts of Chemical Research, 2018, 51, 1858-1869.	7.6	159
22	Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere, 2009, 75, 368-375.	4.2	155
23	Thyroid Disruption by Bisphenol S Analogues via Thyroid Hormone Receptor \hat{I}^2 : <i>iin Vitro</i> , <i>iin Vivo</i> , and Molecular Dynamics Simulation Study. Environmental Science & Eamp; Technology, 2018, 52, 6617-6625.	4.6	153
24	Enantioselectivity in Estrogenic Potential and Uptake of Bifenthrin. Environmental Science & Emp; Technology, 2007, 41, 6124-6128.	4.6	151
25	Reaction of Tetrabromobisphenol A (TBBPA) with Manganese Dioxide: Kinetics, Products, and Pathways. Environmental Science & Eamp; Technology, 2009, 43, 4480-4486.	4.6	144
26	<i>Ortho</i> - and <i>Para</i> -Selective Ruthenium-Catalyzed C(sp ²)â€"H Oxygenations of Phenol Derivatives. Organic Letters, 2013, 15, 3484-3486.	2.4	144
27	Highly efficient detoxification of Cr(VI) by chitosan–Fe(III) complex: Process and mechanism studies. Journal of Hazardous Materials, 2013, 244-245, 689-697.	6.5	142
28	Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquatic Toxicology, 2008, 88, 301-307.	1.9	141
29	Enantioselective Environmental Toxicology of Chiral Pesticides. Chemical Research in Toxicology, 2015, 28, 325-338.	1.7	141
30	Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China. Science of the Total Environment, 2015, 538, 959-965.	3.9	138
31	Methylenecyclopropane Annulation by Manganese(I)â€Catalyzed Stereoselective Câ^'H/Câ^'C Activation. Angewandte Chemie - International Edition, 2017, 56, 9415-9419.	7.2	131
32	Chlorinated Polyfluoroalkyl Ether Sulfonic Acids in Matched Maternal, Cord, and Placenta Samples: A Study of Transplacental Transfer. Environmental Science & Environmental Science & 2017, 51, 6387-6394.	4.6	130
33	Manganese(I)â€Catalyzed C–H Aminocarbonylation of Heteroarenes. Angewandte Chemie - International Edition, 2015, 54, 14137-14140.	7.2	126
34	Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 122, 57-60.	2.0	122
35	Occurrence, abundance, and distribution of sulfonamide and tetracycline resistance genes in agricultural soils across China. Science of the Total Environment, 2017, 599-600, 1977-1983.	3.9	122
36	Al-doping chitosan–Fe(III) hydrogel for the removal of fluoride from aqueous solutions. Chemical Engineering Journal, 2014, 248, 98-106.	6.6	119

#	Article	IF	Citations
37	Enantioselective Degradation and Ecotoxicity of the Chiral Herbicide Diclofop in Three Freshwater Alga Cultures. Journal of Agricultural and Food Chemistry, 2008, 56, 2139-2146.	2.4	117
38	Antioxidant defense system responses and DNA damage of earthworms exposed to Perfluorooctane sulfonate (PFOS). Environmental Pollution, 2013, 174, 121-127.	3.7	116
39	Potential Estrogenic Effects of Phosphorus-Containing Flame Retardants. Environmental Science & Environmental	4.6	116
40	Drug Metabolism by Cytochrome P450 Enzymes: What Distinguishes the Pathways Leading to Substrate Hydroxylation Over Desaturation?. Chemistry - A European Journal, 2015, 21, 9083-9092.	1.7	116
41	Determination of glyphosate by ion chromatography. Journal of Chromatography A, 1999, 850, 297-301.	1.8	115
42	Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. TrAC - Trends in Analytical Chemistry, 2009, 28, 1148-1163.	5.8	112
43	Enantiomer separation of triazole fungicides by highâ€performance liquid chromatography. Chirality, 2009, 21, 421-427.	1.3	111
44	Reinstate regional transport of PM _{2.5} as a major cause of severe haze in Beijing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2739-40.	3.3	111
45	Endocrine-Disrupting Effects of Pesticides through Interference with Human Glucocorticoid Receptor. Environmental Science & Eamp; Technology, 2016, 50, 435-443.	4.6	111
46	Versatile ruthenium(ii)-catalyzed C–H cyanations of benzamides. Chemical Communications, 2014, 50, 1878.	2.2	110
47	Status, Influences and Risk Assessment of Hexachlorocyclohexanes in Agricultural Soils Across China. Environmental Science & Eamp; Technology, 2013, 47, 12140-12147.	4.6	108
48	Enantioselectivity Tuning of Chiral Herbicide Dichlorprop by Copper: Roles of Reactive Oxygen Species. Environmental Science &	4.6	106
49	An Efficient and General Iron atalyzed CC Bond Activation with 1,3â€Dicarbonyl Units as a Leaving Groups. Angewandte Chemie - International Edition, 2011, 50, 2975-2978.	7.2	105
50	Sorption and Degradation of Imidacloprid in Soil and Water. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41, 623-634.	0.7	103
51	Isomer-Specific Transplacental Transfer of Perfluoroalkyl Acids: Results from a Survey of Paired Maternal, Cord Sera, and Placentas. Environmental Science & Environmental Sci	4.6	101
52	Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides. Chirality, 2005, 17, S127-S133.	1.3	99
53	Manganese(I)â€Catalyzed Dispersionâ€Enabled Câ^'H/Câ^'C Activation. Chemistry - A European Journal, 2017, 23, 5443-5447.	1.7	98
54	Embryonic exposure to butachlor in zebrafish (Danio rerio): Endocrine disruption, developmental toxicity and immunotoxicity. Ecotoxicology and Environmental Safety, 2013, 89, 189-195.	2.9	95

#	Article	IF	CITATIONS
55	Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere, 2014, 96, 146-154.	4.2	94
56	I ₂ â€Catalyzed Indole Formation via Oxidative Cyclization of <i>N</i> â€Aryl Enamines. Chemistry - an Asian Journal, 2011, 6, 1340-1343.	1.7	93
57	Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. Applied Catalysis B: Environmental, 2021, 282, 119551.	10.8	93
58	Enantioselective Phytoeffects of Chiral Pesticides. Journal of Agricultural and Food Chemistry, 2009, 57, 2087-2095.	2.4	92
59	PHASE DISTRIBUTION OF SYNTHETIC PYRETHROIDS IN RUNOFF AND STREAM WATER. Environmental Toxicology and Chemistry, 2004, 23, 7.	2.2	91
60	Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL) cell line. Toxicology, 2008, 253, 89-96.	2.0	91
61	The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquatic Toxicology, 2009, 92, 250-257.	1.9	90
62	Multiphase Porous Electrochemical Catalysts Derived from Iron-Based Metal–Organic Framework Compounds. Environmental Science & Environmental Scienc	4.6	90
63	Enantiomeric separation of organophosphorus pesticides by high-performance liquid chromatography, gas chromatography and capillary electrophoresis and their applications to environmental fate and toxicity assays. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2010. 878. 1264-1276.	1.2	89
64	Enantioselective Degradation and Chiral Stability of Pyrethroids in Soil and Sediment. Journal of Agricultural and Food Chemistry, 2006, 54, 5040-5045.	2.4	88
65	Resolution of the Ongoing Challenge of Estimating Nonpoint Source Neonicotinoid Pollution in the Yangtze River Basin Using a Modified Mass Balance Approach. Environmental Science & Emp; Technology, 2019, 53, 2539-2548.	4.6	88
66	Single and Joint Acute Toxicity of Isocarbophos Enantiomers to <i>Daphnia magna</i> . Journal of Agricultural and Food Chemistry, 2008, 56, 4273-4277.	2.4	87
67	Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos. Science of the Total Environment, 2016, 542, 876-885.	3.9	87
68	Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination. Applied Catalysis A: General, 2010, 378, 169-174.	2.2	86
69	Development of chiral stationary phases for high-performance liquid chromatographic separation. TrAC - Trends in Analytical Chemistry, 2012, 39, 180-194.	5.8	86
70	Iron-Catalyzed Oxidation of Tertiary Amines: Synthesis of β-1,3-Dicarbonyl Aldehydes by Three-Component C–C Couplings. Organic Letters, 2011, 13, 6272-6275.	2.4	82
71	Carbonaceous sulfur-containing chitosan–Fe(III): A novel adsorbent for efficient removal of copper (II) from water. Chemical Engineering Journal, 2015, 259, 372-380.	6.6	82
72	Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambdaâ€eyhalothrin. Environmental Toxicology and Chemistry, 2008, 27, 174-181.	2.2	81

#	Article	IF	CITATIONS
73	Permethrin exposure during puberty has the potential to enantioselectively induce reproductive toxicity in mice. Environment International, 2012, 42, 144-151.	4.8	80
74	Distribution, historical trends and inventories of polychlorinated biphenyls in sediments from Yangtze River Estuary and adjacent East China Sea. Environmental Pollution, 2012, 169, 20-26.	3.7	80
7 5	Benzotriazole UV 328 and UV-P showed distinct antiandrogenic activity upon human CYP3A4-mediated biotransformation. Environmental Pollution, 2017, 220, 616-624.	3.7	80
76	Disruption of the Hormonal Network and the Enantioselectivity of Bifenthrin in Trophoblast: Maternal–Fetal Health Risk of Chiral Pesticides. Environmental Science & Technology, 2014, 48, 8109-8116.	4.6	77
77	Cobalt(III)-Catalyzed Allylation with Allyl Acetates by C–H/C–O Cleavage. Synlett, 2015, 26, 1596-1600.	1.0	77
78	ISOMER SELECTIVITY IN AQUATIC TOXICITY AND BIODEGRADATION OF BIFENTHRIN AND PERMETHRIN. Environmental Toxicology and Chemistry, 2005, 24, 1861.	2.2	76
79	Occurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regime. Journal of Hazardous Materials, 2013, 248-249, 142-149.	6.5	76
80	Chiral Stability of Synthetic Pyrethroid Insecticides. Journal of Agricultural and Food Chemistry, 2005, 53, 3814-3820.	2.4	75
81	Enantiomeric Resolution and Biotoxicity of Methamidophos. Journal of Agricultural and Food Chemistry, 2006, 54, 8134-8138.	2.4	75
82	Synergistic Heterobimetallic Manifold for Expedient Manganese(I)â€Catalyzed Câ^'H Cyanation. Chemistry - A European Journal, 2016, 22, 17958-17961.	1.7	75
83	Isomer Selectivity in Aquatic Toxicity and Biodegradation of Cypermethrin. Journal of Agricultural and Food Chemistry, 2004, 52, 6233-6238.	2.4	74
84	Inhibitory effects of paraquat on photosynthesis and the response to oxidative stress in Chlorella vulgaris. Ecotoxicology, 2009, 18, 537-543.	1.1	74
85	Effect of Chitosan on the Enantioselective Bioavailability of the Herbicide Dichlorprop to <i>Chlorella pyrenoidosa</i> . Environmental Science & Envir	4.6	74
86	Spatial Distribution of Hexachlorocyclohexanes in Agricultural Soils in Zhejiang Province, China, and Correlations with Elevation and Temperature. Environmental Science & Env	4.6	74
87	Dissipation and Enantioselective Degradation of Plant Growth Retardants Paclobutrazol and Uniconazole in Open Field, Greenhouse, and Laboratory Soils. Environmental Science & Eamp; Technology, 2013, 47, 843-849.	4.6	74
88	Catalystâ€Guided C=Het Hydroarylations by Manganeseâ€Catalyzed Additiveâ€Free Câ^'H Activation. Chemistry - A European Journal, 2016, 22, 14856-14859.	1.7	74
89	Environmental exposure to polycyclic aromatic hydrocarbons (PAHs): The correlation with and impact on reproductive hormones in umbilical cord serum. Environmental Pollution, 2017, 220, 1429-1437.	3.7	74
90	Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell. Toxicology in Vitro, 2008, 22, 1520-1527.	1.1	72

#	Article	IF	CITATIONS
91	Induction of hepatic estrogen-responsive gene transcription by permethrin enantiomers in male adult zebrafish. Aquatic Toxicology, 2008, 88, 146-152.	1.9	71
92	Induction of Macrophage Apoptosis by an Organochlorine Insecticide Acetofenate. Chemical Research in Toxicology, 2009, 22, 504-510.	1.7	71
93	Residues of Currently and Never Used Organochlorine Pesticides in Agricultural Soils from Zhejiang Province, China. Journal of Agricultural and Food Chemistry, 2012, 60, 2982-2988.	2.4	71
94	Probing the Molecular Interaction of Triazole Fungicides with Human Serum Albumin by Multispectroscopic Techniques and Molecular Modeling. Journal of Agricultural and Food Chemistry, 2013, 61, 7203-7211.	2.4	70
95	Enantioselective phytotoxicity of the herbicide imazethapyr in rice. Chemosphere, 2009, 76, 885-892.	4.2	69
96	Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids. Environmental Pollution, 2010, 158, 1968-1973.	3.7	67
97	Manganese(I)â€Catalyzed Substitutive Câ^'H Allylation. Angewandte Chemie, 2016, 128, 7878-7881.	1.6	66
98	Effects of Dissolved Organic Matter on Permethrin Bioavailability toDaphniaSpecies. Journal of Agricultural and Food Chemistry, 2006, 54, 3967-3972.	2.4	65
99	Inhibitory effects of atrazine on <i>Chlorella vulgaris</i> as assessed by realâ€time polymerase chain reaction. Environmental Toxicology and Chemistry, 2008, 27, 182-187.	2.2	65
100	Efficient removal of dyes in water using chitosan microsphere supported cobalt (II) tetrasulfophthalocyanine with H2O2. Journal of Hazardous Materials, 2010, 177, 560-566.	6.5	65
101	Separation and Analysis of Diastereomers and Enantiomers of Cypermethrin and Cyfluthrin by Gas Chromatography. Journal of Agricultural and Food Chemistry, 2004, 52, 755-761.	2.4	64
102	INHIBITION OF AQUATIC TOXICITY OF PYRETHROID INSECTICIDES BY SUSPENDED SEDIMENT. Environmental Toxicology and Chemistry, 2006, 25, 1913.	2.2	64
103	Occurrence of nitro- and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human exposure through soil ingestion. Environment International, 2017, 108, 261-270.	4.8	64
104	Fe-N-Graphene Wrapped Al ₂ O ₃ /Pentlandite from Microalgae: High Fenton Catalytic Efficiency from Enhanced Fe ³⁺ Reduction. Environmental Science & Science & Technology, 2018, 52, 3608-3614.	4.6	64
105	Influence of organic matter and its clay complexes on metolachlor adsorption on soil. Pest Management Science, 1992, 36, 283-286.	0.6	63
106	Estrogenic activity of lambdaâ€cyhalothrin in the MCFâ€7 human breast carcinoma cell line. Environmental Toxicology and Chemistry, 2008, 27, 1194-1200.	2,2	63
107	Disrupting effects of bifenthrin on ovulatory gene expression and prostaglandin synthesis in rat ovarian granulosa cells. Toxicology, 2011, 282, 47-55.	2.0	62
108	Molecular interactions of benzophenone UV filters with human serum albumin revealed by spectroscopic techniques and molecular modeling. Journal of Hazardous Materials, 2013, 263, 618-626.	6.5	62

#	Article	IF	CITATIONS
109	Residues and enantiomeric profiling of organochlorine pesticides in sediments from Yueqing Bay and Sanmen Bay, East China Sea. Chemosphere, 2010, 80, 652-659.	4.2	61
110	Distribution of organochlorine pesticides in sediments from Yangtze River Estuary and the adjacent East China Sea: Implication of transport, sources and trends. Chemosphere, 2014, 114, 26-34.	4.2	61
111	Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chemosphere, 2010, 81, 430-435.	4.2	60
112	Association of pyrethroids exposure with onset of puberty in Chinese girls. Environmental Pollution, 2017, 227, 606-612.	3.7	60
113	Iron-catalysed regioselective hydrogenation of terminal epoxides to alcohols under mild conditions. Nature Catalysis, 2019, 2, 523-528.	16.1	59
114	Structural Influences in Relative Sorptivity of Chloroacetanilide Herbicides on Soil. Journal of Agricultural and Food Chemistry, 2000, 48, 4320-4325.	2.4	58
115	Origin of air pollution during a weekly heavy haze episode in Hangzhou, China. Environmental Chemistry Letters, 2014, 12, 543-550.	8.3	58
116	Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. Scientific Reports, 2015, 5, 11975.	1.6	58
117	Degradation and detoxification of acetochlor in soils treated by organic and thiosulfate amendments. Chemosphere, 2007, 66, 286-292.	4.2	57
118	MnCl ₂ â€Catalyzed Câ^'H Alkylations with Alkyl Halides. Chemistry - A European Journal, 2017, 23, 11524-11528.	1.7	57
119	Degradation and Adsorption of Fosthiazate in Soil. Journal of Agricultural and Food Chemistry, 2004, 52, 6239-6242.	2.4	56
120	A comparative study of rac- and S-metolachlor toxicity to Daphnia magna. Ecotoxicology and Environmental Safety, 2006, 63, 451-455.	2.9	55
121	H2O2-induced surface modification: A facile, effective and environmentally friendly pretreatment of chitosan for dyes removal. Chemical Engineering Journal, 2011, 166, 474-482.	6.6	55
122	Enantioselective Physiological Effects of the Herbicide Diclofop on Cyanobacterium <i>Microcystis aeruginosa</i> . Environmental Science & Environmenta	4.6	55
123	Exposure to Organochlorine Pollutants and Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE, 2014, 9, e85556.	1.1	55
124	Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico envidence. Aquatic Toxicology, 2016, 175, 39-46.	1.9	54
125	The occurrence and sources of polychlorinated biphenyls (PCBs) in agricultural soils across China with an emphasis on unintentionally produced PCBs. Environmental Pollution, 2021, 271, 116171.	3.7	54
126	Stereoisomeric Separation and Toxicity of a New Organophosphorus Insecticide Chloramidophos. Chemical Research in Toxicology, 2007, 20, 400-405.	1.7	53

#	Article	IF	CITATIONS
127	Visible Light-Induced Degradation of Phenol over Iodine-Doped Titanium Dioxide Modified with Platinum: Role of Platinum and the Reaction Mechanism. Journal of Physical Chemistry C, 2010, 114, 526-532.	1.5	52
128	Enantioselective Phytotoxicity of the Herbicide Imazethapyr on the Response of the Antioxidant System and Starch Metabolism in Arabidopsis thaliana. PLoS ONE, 2011, 6, e19451.	1.1	52
129	Atomic Insights into Distinct Hormonal Activities of Bisphenol A Analogues toward PPARγ and ERα Receptors. Chemical Research in Toxicology, 2014, 27, 1769-1779.	1.7	51
130	Residue patterns of currently, historically and never-used organochlorine pesticides in agricultural soils across China and associated health risks. Environmental Pollution, 2016, 219, 315-322.	3.7	51
131	A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water. Water Research, 2016, 90, 24-33.	5.3	51
132	Relationships of Pyrethroid Exposure with Gonadotropin Levels and Pubertal Development in Chinese Boys. Environmental Science & Environmental Science	4.6	51
133	Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae. Aquatic Toxicology, 2014, 154, 114-120.	1.9	50
134	Flotation chemistry features in bastnaesite flotation with potassium lauryl phosphate. Minerals Engineering, 2016, 85, 17-22.	1.8	50
135	Functional Identification of Two Novel Genes from Pseudomonas sp. Strain HZN6 Involved in the Catabolism of Nicotine. Applied and Environmental Microbiology, 2012, 78, 2154-2160.	1.4	49
136	Synthesis of α-ester–β-keto peroxides via iron-catalyzed carbonylation–peroxidation of α,β-unsaturated esters. Tetrahedron, 2012, 68, 10333-10337.	1.0	49
137	Assessing the underlying breast cancer risk of Chinese females contributed by dietary intake of residual DDT from agricultural soils. Environment International, 2014, 73, 208-215.	4.8	49
138	Metabolic Mechanism of Aryl Phosphorus Flame Retardants by Cytochromes P450: A Combined Experimental and Computational Study on Triphenyl Phosphate. Environmental Science & Emp; Technology, 2018, 52, 14411-14421.	4.6	49
139	Enantioselective Phytotoxicity of the Herbicide Imazethapyr and its Effect on Rice Physiology and Gene Transcription. Environmental Science & Environm	4.6	48
140	Concentrations of DDTs and Enantiomeric Fractions of Chiral DDTs in Agricultural Soils from Zhejiang Province, China, and Correlations with Total Organic Carbon and pH. Journal of Agricultural and Food Chemistry, 2012, 60, 8294-8301.	2.4	48
141	Sensitive Determination of DNA Based on the Interaction between Norfloxacinâ^'Tb3+Complex and DNA. Journal of Agricultural and Food Chemistry, 2005, 53, 6207-6212.	2.4	47
142	Enantioselective Damage of Diclofop Acid Mediated by Oxidative Stress and Acetyl-CoA Carboxylase in Nontarget Plant <i>Arabidopsis thaliana</i> Environmental Science & Environmental Science, 2012, 46, 8405-8412.	4.6	47
143	Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) and dioxin-like polychlorinated biphenyls (dioxin-like PCBs) in the soil in a typical area of eastern China. Journal of Hazardous Materials, 2009, 163, 959-966.	6.5	46
144	Polychlorinated biphenyls in surface sediments of Yueqing Bay, Xiangshan Bay, and Sanmen Bay in East China Sea. Chemosphere, 2011, 83, 137-143.	4.2	46

#	Article	IF	Citations
145	Determination of Enantiomers of Synthetic Pyrethroids in Water by Solid Phase Microextraction â ² Enantioselective Gas Chromatography. Journal of Agricultural and Food Chemistry, 2004, 52, 736-741.	2.4	45
146	Separation and aquatic toxicity of enantiomers of the organophosphorus insecticide trichloronate. Chirality, 2006, 18, 713-716.	1.3	45
147	Isolation, transposon mutagenesis, and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. Applied Microbiology and Biotechnology, 2014, 98, 2625-2636.	1.7	45
148	Distribution and uptake pathways of organochlorine pesticides in greenhouse and conventional vegetables. Science of the Total Environment, 2015, 505, 1142-1147.	3.9	45
149	Pentabromoethylbenzene Exposure Induces Transcriptome Aberration and Thyroid Dysfunction: <i>In Vitro, in Silico</i> , and <i>in Vivo</i> Investigations. Environmental Science & Dysfunction; 2020, 54, 12335-12344.	4.6	45
150	Stereoisomeric separation and toxicity of the nematicide fosthiazate. Environmental Toxicology and Chemistry, 2007, 26, 2339-2344.	2.2	44
151	Enantioselectivity in the Phytotoxicity of Herbicide Imazethapyr. Journal of Agricultural and Food Chemistry, 2009, 57, 1624-1631.	2.4	44
152	Pyrethroid Insecticide Cypermethrin Accelerates Pubertal Onset in Male Mice via Disrupting Hypothalamic–Pituitary–Gonadal Axis. Environmental Science & Disrupting Technology, 2017, 51, 10212-10221.	4.6	44
153	Competitive Sorption between Imidacloprid and Imidacloprid-urea on Soil Clay Minerals and Humic Acids. Journal of Agricultural and Food Chemistry, 2002, 50, 6823-6827.	2.4	43
154	Enantioselectivity in Zebrafish Embryo Toxicity of the Insecticide Acetofenate. Chemical Research in Toxicology, 2008, 21, 1050-1055.	1.7	43
155	Highly time- and size-resolved fingerprint analysis and risk assessment of airborne elements in a megacity in the Yangtze River Delta, China. Chemosphere, 2015, 119, 112-121.	4.2	42
156	Enantiomeric separation of imidazolinone herbicides using chiral high-performance liquid chromatography. Chirality, 2007, 19, 171-178.	1.3	41
157	Hepatic and extrahepatic expression of estrogen-responsive genes in male adult zebrafish (Danio) Tj ETQq1 1 0.75 Assessment, 2008, 146, 105-111.	84314 rgB 1.3	T /Overlock 41
158	Enantioselective induction of estrogen-responsive gene expression by permethrin enantiomers in embryo-larval zebrafish. Chemosphere, 2009, 74, 1238-1244.	4.2	41
159	Levels and distribution of Dechlorane Plus and related compounds in surficial sediments of the Qiantang River in eastern China: The results of urbanization and tide. Science of the Total Environment, 2013, 443, 194-199.	3.9	41
160	Methylenecyclopropane Annulation by Manganese(I)â€Catalyzed Stereoselective Câ^'H/Câ^'C Activation. Angewandte Chemie, 2017, 129, 9543-9547.	1.6	41
161	Enantioselective Effects of Metalaxyl Enantiomers in Adolescent Rat Metabolic Profiles Using NMR-Based Metabolomics. Environmental Science & Environme	4.6	41
162	ENANTIOSELECTIVE ESTROGENICITY OF o,p′-DICHLORODIPHENYLTRICHLOROETHANE IN THE MCF-7 HUMAN BREAST CARCINOMA CELL LINE. Environmental Toxicology and Chemistry, 2009, 28, 1.	2.2	40

#	Article	IF	CITATIONS
163	Dynamics of uptake and elimination of pyrethroid insecticides in zebrafish (Danio rerio) eleutheroembryos. Ecotoxicology and Environmental Safety, 2014, 107, 186-191.	2.9	40
164	Bastnaesite flotation chemistry issues associated with alkyl phosphate collectors. Minerals Engineering, 2018, 127, 286-295.	1.8	40
165	Enantiomer-specific, bifenthrin-induced apoptosis mediated by MAPK signalling pathway in Hep G2 Cells. Toxicology, 2009, 261, 119-125.	2.0	39
166	Extraction of molybdenum from low-grade Ni–Mo ore in sodium hypochlorite solution under mechanical activation. Minerals Engineering, 2011, 24, 1580-1585.	1.8	39
167	Distinct mechanisms of endocrine disruption of DDTâ€related pesticides toward estrogen receptor α and estrogenâ€related receptor γ. Environmental Toxicology and Chemistry, 2012, 31, 2597-2605.	2.2	39
168	Risks from sediments contaminated with organochlorine pesticides in Hangzhou, China. Chemosphere, 2013, 90, 2341-2346.	4.2	39
169	Inhibited Nitric Oxide Production of Human Endothelial Nitric Oxide Synthase by Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons. Environmental Science & Environmental Science & 2922-2930.	4.6	39
170	Enantioselectivity in the immunotoxicity of the insecticide acetofenate in an in vitro model. Environmental Toxicology and Chemistry, 2009, 28, 578-585.	2.2	38
171	Lauryl phosphate adsorption in the flotation of Bastnaesite, (Ce,La)FCO3. Journal of Colloid and Interface Science, 2017, 490, 825-833.	5.0	38
172	Tailored Cobaltâ€Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie - International Edition, 2018, 57, 11673-11677.	7.2	38
173	Prenatal exposure to chlorinated polyfluoroalkyl ether sulfonic acids and perfluoroalkyl acids: Potential role of maternal determinants and associations with birth outcomes. Journal of Hazardous Materials, 2019, 380, 120867.	6.5	38
174	Enantioselectivity in aquatic toxicity of synthetic pyrethroid insecticide fenvalerate. Ecotoxicology and Environmental Safety, 2009, 72, 1913-1918.	2.9	37
175	Dual enantioselective effect of the insecticide bifenthrin on locomotor behavior and development in embryonic–larval zebrafish. Environmental Toxicology and Chemistry, 2010, 29, 1561-1567.	2.2	37
176	Enantioselective endocrine-disrupting effects of bifenthrin on hormone synthesis in rat ovarian cells. Toxicology, 2011, 290, 42-49.	2.0	37
177	Magnetic lanthanide oxide catalysts: An application and comparison in the heterogeneous catalytic ozonation of diethyl phthalate in aqueous solution. Separation and Purification Technology, 2016, 159, 57-67.	3.9	37
178	Computational Biotransformation Profile of Emerging Phenolic Pollutants by Cytochromes P450: Phenol-Coupling Mechanism. Environmental Science & Emp; Technology, 2020, 54, 2902-2912.	4.6	37
179	Influence of Organic Matter and pH on Bentazone Sorption in Soils. Journal of Agricultural and Food Chemistry, 2003, 51, 5362-5366.	2.4	36
180	Toxicity of Chiral Pesticide Rac-Metalaxyl and R-Metalaxyl to Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 2008, 81, 531-534.	1.3	35

#	Article	IF	CITATIONS
181	Enantioselective Effects of Chiral Herbicide Diclofop Acid on Rice Xiushui 63 Seedlings. Bulletin of Environmental Contamination and Toxicology, 2009, 83, 85-91.	1.3	35
182	Enantioselective cytotoxicity of isocarbophos is mediated by oxidative stress-induced JNK activation in human hepatocytes. Toxicology, 2010, 276, 115-121.	2.0	35
183	Screening of chemicals with anti-estrogenic activity using in vitro and in vivo vitellogenin induction responses in zebrafish (Danio rerio). Chemosphere, 2010, 78, 793-799.	4.2	35
184	Facile, green encapsulation of cobalt tetrasulfophthalocyanine monomers in mesoporous silicas for the degradative hydrogen peroxide oxidation of azo dyes. Journal of Hazardous Materials, 2011, 193, 209-215.	6.5	34
185	Enantioselective Induction of Cytotoxicity by <i>>o</i> , <i>p</i> àꀲ-DDD in PC12 Cells: Implications of Chirality in Risk Assessment of POPs Metabolites. Environmental Science & Environmental Scien	4.6	34
186	Production of Hydroxylated Polybrominated Diphenyl Ethers from Bromophenols by Bromoperoxidase-Catalyzed Dimerization. Environmental Science & Environmental Science, 2014, 48, 11977-11983.	4.6	34
187	Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid. Aquatic Toxicology, 2014, 146, 12-19.	1.9	34
188	A heavy haze episode in Beijing in February of 2014: Characteristics, origins and implications. Atmospheric Pollution Research, 2015, 6, 867-876.	1.8	34
189	Congener-Specific Mother–Fetus Distribution, Placental Retention, and Transport of C _{10–13} and C _{14–17} Chlorinated Paraffins in Pregnant Women. Environmental Science & Env	4.6	34
190	A Heavy Haze Episode in Shanghai in December of 2013: Characteristics, Origins and Implications. Aerosol and Air Quality Research, 2015, 15, 1881-1893.	0.9	34
191	Burned rice straw reduces the availability of clomazone to barnyardgrass. Science of the Total Environment, 2008, 392, 284-289.	3.9	33
192	Nano-MnOx on activated carbon prepared by hydrothermal process for fast and highly efficient degradation of azo dyes. Applied Catalysis A: General, 2014, 485, 91-98.	2.2	33
193	An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation. Journal of Hazardous Materials, 2015, 283, 871-879.	6.5	33
194	Occurrence and geographic distribution of polycyclic aromatic hydrocarbons in agricultural soils in eastern China. Environmental Science and Pollution Research, 2017, 24, 12168-12175.	2.7	33
195	Characteristics and origins of air pollutants in Wuhan, China, based on observations and hybrid receptor models. Journal of the Air and Waste Management Association, 2017, 67, 739-753.	0.9	33
196	Dispersion behavior and attachment of high internal phase water-in-oil emulsion droplets during fine coal flotation. Fuel, 2019, 253, 273-282.	3.4	33
197	Influence of Herbicide Structure, Clay Acidity, and Humic Acid Coating on Acetanilide Herbicide Adsorption on Homoionic Clays. Journal of Agricultural and Food Chemistry, 2002, 50, 4003-4008.	2.4	32
198	Preparation, Stabilization, and Bioefficacy of \hat{l}^2 -Cyclodextrin Inclusion Compounds of Chloramidophos. Journal of Agricultural and Food Chemistry, 2008, 56, 2708-2713.	2.4	32

#	Article	IF	Citations
199	Photoperiod and temperature influence endocrine disruptive chemical-mediated effects in male adult zebrafish. Aquatic Toxicology, 2009, 92, 38-43.	1.9	32
200	Î ³ -Al ₂ O ₃ Modified with Praseodymium: An Application in the Heterogeneous Catalytic Ozonation of Succinic Acid in Aqueous Solution. Industrial & Engineering Chemistry Research, 2010, 49, 12345-12351.	1.8	32
201	Increasing the activity and stability of chemi-deposited palladium catalysts on nickel foam substrate by electrochemical deposition of a middle coating of silver. Separation and Purification Technology, 2011, 80, 526-532.	3.9	32
202	Enantioselective Interaction of Acid \hat{l}_{\pm} -Naphthyl Acetate Esterase with Chiral Organophosphorus Insecticides. Journal of Agricultural and Food Chemistry, 2014, 62, 1477-1481.	2.4	32
203	The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana. Journal of Plant Physiology, 2014, 171, 92-98.	1.6	32
204	Prenatal and postnatal exposure risk assessment of chlorinated paraffins in mothers and neonates: Occurrence, congener profile, and transfer behavior. Journal of Hazardous Materials, 2020, 395, 122660.	6.5	32
205	Adsorption of Triclopyr on Soil and Some of Its Components. Journal of Agricultural and Food Chemistry, 1994, 42, 1026-1029.	2.4	31
206	Induction of estrogen-responsive gene transcription in the embryo, larval, juvenile and adult life stages of zebrafish as biomarkers of short-term exposure to endocrine disrupting chemicals. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 150, 414-420.	1.3	31
207	Enantiomeric Resolution and Growth-Retardant Activity in Rice Seedlings of Uniconazole. Journal of Agricultural and Food Chemistry, 2012, 60, 160-164.	2.4	31
208	Cloning of a Novel Nicotine Oxidase Gene from Pseudomonas sp. Strain HZN6 Whose Product Nonenantioselectively Degrades Nicotine to Pseudooxynicotine. Applied and Environmental Microbiology, 2013, 79, 2164-2171.	1.4	31
209	Practical Catalytic Cleavage of C(sp ³)â^'C(sp ³) Bonds in Amines. Angewandte Chemie - International Edition, 2019, 58, 10693-10697.	7.2	31
210	Evaluation of the role of the glutathione redox cycle in Cu(II) toxicity to green algae by a chiral perturbation approach. Aquatic Toxicology, 2012, 120-121, 19-26.	1.9	30
211	Risk assessment of xenoestrogens in a typical domestic sewage-holding lake in China. Chemosphere, 2013, 93, 892-898.	4.2	30
212	Kinetics of electrochemical dechlorination of 2-chlorobiphenyl on a palladium-modified nickel foam cathode in a basic medium: From batch to continuous reactor operation. Electrochimica Acta, 2013, 109, 502-511.	2.6	30
213	A Study of Characteristics and Origins of Haze Pollution in Zhengzhou, China, Based on Observations and Hybrid Receptor Models. Aerosol and Air Quality Research, 2017, 17, 513-528.	0.9	30
214	Characterization of Inclusion Complexation between Fenoxaprop-p-ethyl and Cyclodextrin. Journal of Agricultural and Food Chemistry, 2005, 53, 7193-7197.	2.4	29
215	Binding of phenthoate to bovine serum albumin and reduced inhibition on acetylcholinesterase. Pesticide Biochemistry and Physiology, 2007, 88, 176-180.	1.6	29
216	RELATION OF DICLOFOP-METHYL TOXICITY AND DEGRADATION IN ALGAE CULTURES. Environmental Toxicology and Chemistry, 2007, 26, 970.	2.2	29

#	Article	IF	Citations
217	Enantioselective Separation and Phytotoxicity on Rice Seedlings of Paclobutrazol. Journal of Agricultural and Food Chemistry, 2011, 59, 4300-4305.	2.4	29
218	Effects of metolachlor on transcription of thyroid system-related genes in juvenile and adult Japanese medaka (Oryzias latipes). General and Comparative Endocrinology, 2011, 170, 487-493.	0.8	29
219	A Novel (<i>S</i>)-6-Hydroxynicotine Oxidase Gene from Shinella sp. Strain HZN7. Applied and Environmental Microbiology, 2014, 80, 5552-5560.	1.4	29
220	High-dispersive FeS2 on graphene oxide for effective degradation of 4-chlorophenol. RSC Advances, 2015, 5, 2449-2456.	1.7	29
221	Anthropogenic aerosols are a potential cause for migration of the summer monsoon rain belt in China. Proceedings of the National Academy of Sciences of the United States of America, 2016 , 113 , $E2209-10$.	3.3	29
222	Lead, mercury, and cadmium in umbilical cord serum and birth outcomes in Chinese fish consumers. Chemosphere, 2016, 148, 270-275.	4.2	29
223	Binding Specificity Determines the Cytochrome P450 3A4 Mediated Enantioselective Metabolism of Metconazole. Journal of Physical Chemistry B, 2018, 122, 1176-1184.	1.2	29
224	A sirA-like gene, sirA2, is essential for 3-succinoyl-pyridine metabolism in the newly isolated nicotine-degrading Pseudomonas sp. HZN6 strain. Applied Microbiology and Biotechnology, 2011, 92, 1023-1032.	1.7	28
225	Estimation of contaminant subslab concentration in petroleum vapor intrusion. Journal of Hazardous Materials, 2014, 279, 336-347.	6.5	28
226	Residues and chiral signatures of organochlorine pesticides in mollusks from the coastal regions of the Yangtze River Delta: Source and health risk implication. Chemosphere, 2014, 114, 40-50.	4.2	28
227	Hexachlorocyclohexanes in Tree Bark across Chinese Agricultural Regions: Spatial Distribution and Enantiomeric Signatures. Environmental Science & Env	4.6	28
228	Stereoselective induction of developmental toxicity and immunotoxicity by acetochlor in the early life stage of zebrafish. Chemosphere, 2016, 164, 618-626.	4.2	28
229	Time-dependent degradation and toxicity of diclofop-methyl in algal suspensions. Environmental Science and Pollution Research, 2009, 16, 459-465.	2.7	27
230	Enantioselective Degradation of Metalaxyl in Anaerobic Activated Sewage Sludge. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 327-331.	1.3	27
231	Immunotoxicity of pyrethroid metabolites in an in vitro model. Environmental Toxicology and Chemistry, 2010, 29, 2505-2510.	2.2	27
232	<i>In Silico</i> Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation. Chemical Research in Toxicology, 2015, 28, 1522-1531.	1.7	27
233	Enantioselective Phytotoxicity of Dichlorprop to <i>Arabidopsis thaliana</i> : The Effect of Cytochrome P450 Enzymes and the Role of Fe. Environmental Science & Environmental	4.6	27
234	Spatial distribution and implications to sources of halogenated flame retardants in riverine sediments of Taizhou, an intense e-waste recycling area in eastern China. Chemosphere, 2017, 184, 1202-1208.	4.2	27

#	Article	IF	CITATIONS
235	A General Regioselective Synthesis of Alcohols by Cobaltâ€Catalyzed Hydrogenation of Epoxides. Angewandte Chemie - International Edition, 2020, 59, 11321-11324.	7.2	27
236	The organochlorine p,p′-dichlorodiphenyltrichloroethane induces colorectal cancer growth through Wnt/β-catenin signaling. Toxicology Letters, 2014, 229, 284-291.	0.4	26
237	Microbial degradation of alpha-cypermethrin in soil by compound-specific stable isotope analysis. Journal of Hazardous Materials, 2015, 295, 37-42.	6.5	26
238	Enantioseparation of four amide herbicide stereoisomers using high-performance liquid chromatography. Journal of Chromatography A, 2016, 1471, 145-154.	1.8	26
239	Occurrence and partitioning of polyhalogenated carbazoles in seawater and sediment from East China Sea. Water Research, 2021, 190, 116717.	5.3	26
240	p, pâ \in ² -Dichlorodiphenyldichloroethylene Induces Colorectal Adenocarcinoma Cell Proliferation through Oxidative Stress. PLoS ONE, 2014, 9, e112700.	1.1	26
241	Occurrence of Free-Form and Conjugated Bisphenol Analogues in Marine Organisms. Environmental Science & Environmental Science	4.6	25
242	Enantioselective Cytotoxicity Profile of o,p'-DDT in PC 12 Cells. PLoS ONE, 2012, 7, e43823.	1.1	24
243	Molecular Mechanism of Enantioselective Inhibition of Acetolactate Synthase by Imazethapyr Enantiomers. Journal of Agricultural and Food Chemistry, 2010, 58, 4202-4206.	2.4	23
244	Separation and toxicity of salithion enantiomers. Chirality, 2009, 21, 922-928.	1.3	22
245	Understanding the endocrine disruption of chiral pesticides: The enantioselectivity in estrogenic activity of synthetic pyrethroids. Science China Chemistry, 2010, 53, 1003-1009.	4.2	22
246	Synchronous fluorescence measurement of enrofloxacin in the pharmaceutical formulation and its residue in milks based on the yttrium (III)-perturbed luminescence. Talanta, 2010, 82, 1858-1863.	2.9	22
247	Efficient and Selective Synthesis of α,βâ€Epoxyâ€Î³â€Butyrolactones from 2â€Peroxyâ€1,4â€Dicarbonyl Compou Chemistry - an Asian Journal, 2013, 8, 359-363.	ınds. 1.7	22
248	Current pollution status, spatial features, and health risks of legacy and emerging halogenated flame retardants in agricultural soils across China. Science of the Total Environment, 2022, 803, 150043.	3.9	22
249	Carcinogenic Risk of 2,6-Di- <i>tert</i> -Butylphenol and Its Quinone Metabolite 2,6-DTBQ Through Their Interruption of RAR \hat{I}^2 : <i>In Vivo</i> , <i>In Vitro</i> , and <i>In Silico</i> Investigations. Environmental Science & Environmental Scienc	4.6	22
250	Enoxacinâ \in "Tb3+ complex as an environmentally friendly fluorescence probe for DNA and its application. Talanta, 2007, 71, 816-821.	2.9	21
251	Spatial and seasonal variations in air-soil exchange, enantiomeric signatures and associated health risks of hexachlorocyclohexanes (HCHs) in a megacity Hangzhou in the Yangtze River Delta region, China. Science of the Total Environment, 2017, 599-600, 264-272.	3.9	21
252	Enantioselective interaction with acetylcholinesterase of an organophosphate insecticide fenamiphos. Chirality, 2010, 22, 612-617.	1.3	20

#	Article	IF	CITATIONS
253	Low Concentrations of o,p'-DDT Inhibit Gene Expression and Prostaglandin Synthesis by Estrogen Receptor-Independent Mechanism in Rat Ovarian Cells. PLoS ONE, 2012, 7, e49916.	1.1	20
254	Sorption and Catalytic Hydrolysis of Diethatyl-Ethyl on Homoionic Clays. Journal of Agricultural and Food Chemistry, 2000, 48, 1935-1940.	2.4	19
255	Enantioselective separation and degradation of the herbicide dichlorprop methyl in sediment. Chirality, 2009, 21, 480-483.	1.3	19
256	Residues, sources and tissue distributions of organochlorine pesticides in dog sharks (Mustelus) Tj ETQq0 0 0 rgB	T /Overloc 2.3	:k ₁ 10 Tf 50 6
257	Metabolism of Halogenated Alkanes by Cytochrome P450 enzymes. Aerobic Oxidation versus Anaerobic Reduction. Chemistry - an Asian Journal, 2014, 9, 1175-1182.	1.7	19
258	Collector Chemistry for Bastnaesite Flotation – Recent Developments. Mineral Processing and Extractive Metallurgy Review, 2019, 40, 370-379.	2.6	19
259	High-performance liquid chromatographic determination of the herbicide imazapyr residues in water and soil. Science of the Total Environment, 1992, 123-124, 39-43.	3.9	18
260	Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor. Chemical Research in Toxicology, 2016, 29, 841-850.	1.7	18
261	Fractional crystallization for extracting lithium from Cha'erhan tail brine. Hydrometallurgy, 2017, 167, 124-128.	1.8	18
262	Ternary metal oxide embedded carbon derived from metal organic frameworks for adsorption of methylene blue and acid red 73. Chemosphere, 2021, 280, 130567.	4.2	18
263	CORRELATION OF IMAZAPYR ADSORPTION AND DESORPTION WITH SOIL PROPERTIES. Soil Science, 1999, 164, 411-416.	0.9	18
264	Study on the co-luminescence system of Dy–Gd–1,6-bis(1′- phenyl-3′-methyl-5′-pyrazol-4′-one)hezcetyltrimethylammonium bromide and its analytical application. Analyst, The, 2001, 126, 1168-1171.	xanedione	â €" 17
265	Temperature and photoperiod affect the endocrine disruption effects of ethinylestradiol, nonylphenol and their binary mixture in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 151, 258-263.	1.3	17
266	Probing the chiral separation mechanism and the absolute configuration of malathion, malaoxon and isomalathion enantiomers by chiral high performance liquid chromatography coupled with chiral detector–binding energy computations. Journal of Chromatography A, 2013, 1281, 26-31.	1.8	17
267	Enantioselective Phytotoxic Disturbances of Fatty Acids in <i>Arabidopsis thaliana</i> by Dichlorprop. Environmental Science & Disturbances, 2019, 53, 9252-9259.	4.6	17
268	Environmental Effects of Inclusion Complexation between Methylated β-Cyclodextrin and Diclofop-methyl. Journal of Agricultural and Food Chemistry, 2005, 53, 6744-6749.	2.4	16
269	Acute and chronic toxicity of organophosphate monocrotophos to <i>Daphnia magna</i> . Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 44, 38-43.	0.7	16
270	Enantiomer signature and carbon isotope evidence for the migration and transformation of DDTs in arable soils across China. Scientific Reports, 2016, 6, 38475.	1.6	16

#	Article	IF	CITATIONS
271	Levels and patterns of DDTs in maternal colostrum from an island population and exposure of neonates. Environmental Pollution, 2016, 209, 132-139.	3.7	16
272	Spatial distributions and enantiomeric signatures of DDT and its metabolites in tree bark from agricultural regions across China. Environmental Pollution, 2017, 229, 111-118.	3.7	16
273	Tailored Cobaltâ€Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie, 2018, 130, 11847-11851.	1.6	16
274	Thyroid Dysfunction of Zebrafish (<i>Danio rerio</i>) after Early-Life Exposure and Discontinued Exposure to Tetrabromobiphenyl (BB-80) and OH-BB-80. Environmental Science & Exposure & Ex	4.6	16
275	Enzymatic decolorization of Orange II: Optimization by response surface methodology and pathway. Environmental Progress and Sustainable Energy, 2013, 32, 294-301.	1.3	15
276	New insights into the effects of the herbicide imazethapyr on Cu(II) ecotoxicity to the aquatic unicellular alga Scenedesmus obliquus. Aquatic Toxicology, 2013, 140-141, 407-414.	1.9	15
277	Toxic effects of trace elements on newborns and their birth outcomes. Science of the Total Environment, 2016, 550, 73-79.	3.9	15
278	Determination of diclofop-methyl and diclofop residues in soil and crops by gas chromatography. Journal of Chromatography A, 1991, 547, 509-515.	1.8	14
279	Effect of metal-binding ability on the adsorption of acifluorfen on soil. Journal of Agricultural and Food Chemistry, 1993, 41, 502-505.	2.4	14
280	Elucidation of the Enantioselective Enzymatic Hydrolysis of Chiral Herbicide Dichlorprop Methyl by Chemical Modification. Journal of Agricultural and Food Chemistry, 2011, 59, 1924-1930.	2.4	14
281	Conversion of nornicotine to 6-hydroxy-nornicotine and 6-hydroxy-myosmine by Shinella sp. strain HZN7. Applied Microbiology and Biotechnology, 2016, 100, 10019-10029.	1.7	14
282	Metolachlor stereoisomers: Enantioseparation, identification and chiral stability. Journal of Chromatography A, 2016, 1463, 42-48.	1.8	14
283	Exposure and Blood–Cerebrospinal Fluid Barrier Permeability of PFASs in Neonates. Environmental Science and Technology Letters, 2022, 9, 64-70.	3.9	14
284	Transfer hydrogenation of N-heteroarenes with 2-propanol and ethanol enabled by manganese catalysis. Organic Chemistry Frontiers, 2021, 8, 6901-6908.	2.3	13
285	Enrichment of steroid hormones in water with porous and hydrophobic polymerâ€based <scp>SPE</scp> followed by <scp>HPLC</scp> â€" <scp>UV</scp> determination. Journal of Separation Science, 2013, 36, 3321-3329.	1.3	12
286	Synergistic effects of lanthanide surface adhesion and photon-upconversion for enhanced near-infrared responsive photodegradation of organic contaminants in wastewater. Environmental Science: Nano, 2020, 7, 3333-3342.	2.2	12
287	Prenatal and postnatal transfer of perfluoroalkyl substances from mothers to their offspring. Critical Reviews in Environmental Science and Technology, 2022, 52, 2510-2537.	6.6	12
288	Dichlorodiphenyldichloroethylene exposure reduces r-GCS via suppressed Nrf2 in HepG2 cells. Environmental Toxicology, 2016, 31, 350-359.	2.1	11

#	Article	IF	Citations
289	A General Regioselective Synthesis of Alcohols by Cobaltâ€Catalyzed Hydrogenation of Epoxides. Angewandte Chemie, 2020, 132, 11417-11420.	1.6	11
290	Histopathological and proteomic analysis of hepatic tissue from adult male zebrafish exposed to $17\hat{l}^2$ -estradiol. Environmental Toxicology and Pharmacology, 2010, 29, 91-95.	2.0	10
291	Improved Lime Method to Prepare High-Purity Magnesium Hydroxide and Light Magnesia from Bischofite. Jom, 2019, 71, 4674-4680.	0.9	10
292	Application of Crabtree/Pfaltz-Type Iridium Complexes for the Catalyzed Asymmetric Hydrogenation of an Agrochemical Building Block. Organic Process Research and Development, 2020, 24, 443-447.	1.3	10
293	Copper-catalysed low-temperature water–gas shift reaction for selective deuteration of aryl halides. Chemical Science, 2021, 12, 14033-14038.	3.7	10
294	Effects of Bisphenol A and Bisphenol S Exposure at Low Doses on the Metabolome of Adolescent Male Sprague–Dawley Rats. Chemical Research in Toxicology, 2021, 34, 1578-1587.	1.7	10
295	Inclusion Effect of Alpha-Cyclodextrin on Chemical Degradation of Malathionin Water. Archives of Environmental Contamination and Toxicology, 2008, 54, 355-362.	2.1	9
296	Stereoisomeric Separation and Bioassay of a New Organophosphorus Compound, $\langle i>O, \langle i>S-Dimethyl-\langle i>N-(2,2,2-trichloro-1-methoxyethyl)phosphoramidothioate: Some Implications for Chiral Switch. Journal of Agricultural and Food Chemistry, 2009, 57, 6920-6926.$	2.4	9
297	Porous carbon monoliths for electrochemical removal of aqueous herbicides by "one-stop―catalysis of oxygen reduction and H2O2 activation. Journal of Hazardous Materials, 2021, 414, 125592.	6.5	9
298	Endothelial barrier dysfunction induced by anthracene and its nitrated or oxygenated derivatives at environmentally relevant levels. Science of the Total Environment, 2022, 802, 149793.	3.9	9
299	Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization. Journal of Molecular Graphics and Modelling, 2013, 44, 155-160.	1.3	8
300	Enantioseparation of chiral perfluorooctane sulfonate (PFOS) by supercritical fluid chromatography (SFC): Effects of the chromatographic conditions and separation mechanism. Chirality, 2019, 31, 870-878.	1.3	8
301	Adsorption of water and fatty acids at magnesium hydroxide surface from an MDS perspective. Surface Innovations, 2019, 7, 304-316.	1.4	8
302	CF3SO3H-enabled cascade ring-opening/dearomatization of indole derivatives to polycyclic heterocycles. Organic and Biomolecular Chemistry, 2021, 19, 4469-4473.	1.5	8
303	Benzophenone-1 induced aberrant proliferation and metastasis of ovarian cancer cells via activated ERÎ $_\pm$ and Wnt $\hat{\mathbb{N}}^2$ -catenin signaling pathways. Environmental Pollution, 2022, 292, 118370.	3.7	8
304	Influence of toxicity and dissipation of racemic fenoxaprop and its R-enantiomer in <i>Scenedesmus obliquus</i> suspension by cyclodextrins. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43, 231-236.	0.7	7
305	Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon. Environmental Science and Pollution Research, 2017, 24, 3820-3828.	2.7	7
306	Metabolic Susceptibility of 2-Chlorothioxanthone and Its Toxic Effects on mRNA and Protein Expression and Activities of Human CYP1A2 and CYP3A4 Enzymes. Environmental Science & Emp; Technology, 2018, 52, 11904-11912.	4.6	7

#	Article	IF	CITATIONS
307	Deviations from Beer's law in electronic absorption and circular dichroism: Detection for enantiomeric excess analysis. Chirality, 2019, 31, 492-501.	1.3	7
308	Enhancing the vapor condensation efficiency of a solar water purifier by rapid heat dissipation to bottom bulk water. Journal of Materials Chemistry A, 2022, 10, 11784-11792.	5.2	7
309	Adsorption and desorption of dimepiperate by soils. Water, Air, and Soil Pollution, 1994, 73, 325-331.	1.1	6
310	Targeted analytical toxicology: Simultaneous determination of $17\hat{l}_{\pm}$ -ethynylestradiol and the estrogen-induced vitellogenin biomarker. Environment International, 2015, 74, 119-124.	4.8	6
311	Dioxybenzone triggers enhanced estrogenic effect via metabolic activation: in silico, inÂvitro and inÂvivo investigation. Environmental Pollution, 2021, 268, 115766.	3.7	6
312	Dominant Contributions of Secondary Aerosols and Vehicle Emissions to Water-Soluble Inorganic lons of PM2.5 in an Urban Site in the Metropolitan Hangzhou, China. Atmosphere, 2021, 12, 1529.	1.0	6
313	Analysis of fluazifop-butyl and fluazifop residues in soil and crops by gas chromatography. Analyst, The, 1991, 116, 273.	1.7	5
314	Stereoselective Phytotoxicity of HCH Mediated by Photosynthetic and Antioxidant Defense Systems in Arabidopsis thaliana. PLoS ONE, 2013, 8, e51043.	1.1	4
315	Determination of the Relative Configuration of βâ€Amino Acid Esters Based on Residual Dipolar Couplings. European Journal of Organic Chemistry, 2015, 2015, 6801-6805.	1.2	4
316	Assessment of arsenic in colostrum and cord serum and risk exposure to neonates from an island population in China. Environmental Science and Pollution Research, 2016, 23, 22467-22476.	2.7	4
317	Method for the determination of butachlor residues in water, soil and rice. Pest Management Science, 1991, 33, 81-86.	0.6	3
318	Mechanisms of Composition Change and Toxic Potentiation of Chloramidophos Emulsifiable Concentrate during Storage. Journal of Agricultural and Food Chemistry, 2009, 57, 930-937.	2.4	3
319	Enantioseparation and identification for the rationalization of the environmental impact of 4 polychlorinated biphenyls. Chirality, 2018, 30, 475-483.	1.3	3
320	Environmental Significance of the Diclofop-methyl and Cyclodextrin Inclusion Complexes. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41, 1115-1129.	0.7	2
321	Investigation of the binding specificity of Erbin-PDZ affinity clamp by molecular dynamics simulations. Computational and Theoretical Chemistry, 2011, 963, 448-452.	1.1	2
322	p,p′-Dichlorodiphenyltrichloroethane inhibits the apoptosis of colorectal adenocarcinoma DLD1 cells through PI3K/AKT and Hedgehog/Gli1 signaling pathways. Toxicology Research, 2015, 4, 1214-1224.	0.9	2
323	Novel Alkaline Method for the Preparation of Low-Chromium Magnesia. Jom, 2020, 72, 333-339.	0.9	2
324	Lewis Acidâ€Free Ynoateâ€Mediated Chemoselective Reduction of Carboxylic Acids to Primary Alcohols. ChemistrySelect, 2020, 5, 8687-8690.	0.7	1

#	Article	IF	CITATIONS
325	Hydration of Nitriles Enabled by PNPâ^manganese Pincer Catalyst. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	1