Patrick P Michel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/290480/publications.pdf Version: 2024-02-01

DATRICK D MICHEL

#	Article	IF	CITATIONS
1	Modelling α-Synuclein Aggregation and Neurodegeneration with Fibril Seeds in Primary Cultures of Mouse Dopaminergic Neurons. Cells, 2022, 11, 1640.	1.8	8
2	Doxycycline Interferes With Tau Aggregation and Reduces Its Neuronal Toxicity. Frontiers in Aging Neuroscience, 2021, 13, 635760.	1.7	14
3	Doxycycline inhibits α-synuclein-associated pathologies in vitro and in vivo. Neurobiology of Disease, 2021, 151, 105256.	2.1	35
4	The Chemically-Modified Tetracycline COL-3 and Its Parent Compound Doxycycline Prevent Microglial Inflammatory Responses by Reducing Glucose-Mediated Oxidative Stress. Cells, 2021, 10, 2163.	1.8	10
5	Cannabidiol prevents LPSâ€induced microglial inflammation by inhibiting ROS/NFâ€îºBâ€dependent signaling and glucose consumption. Glia, 2020, 68, 561-573.	2.5	93
6	Neuroprotection of dopamine neurons by xenon against low-level excitotoxic insults is not reproduced by other noble gases. Journal of Neural Transmission, 2020, 127, 27-34.	1.4	8
7	3-O-sulfated heparan sulfate interactors target synaptic adhesion molecules from neonatal mouse brain and inhibit neural activity and synaptogenesis in vitro. Scientific Reports, 2020, 10, 19114.	1.6	10
8	CMT-3 targets different α-synuclein aggregates mitigating their toxic and inflammogenic effects. Scientific Reports, 2020, 10, 20258.	1.6	13
9	Contributive Role of TNF-α to L-DOPA-Induced Dyskinesia in a Unilateral 6-OHDA Lesion Model of Parkinson's Disease. Frontiers in Pharmacology, 2020, 11, 617085.	1.6	18
10	Rifampicin and Its Derivative Rifampicin Quinone Reduce Microglial Inflammatory Responses and Neurodegeneration Induced In Vitro by α-Synuclein Fibrillary Aggregates. Cells, 2019, 8, 776.	1.8	39
11	S29434, a Quinone Reductase 2 Inhibitor: Main Biochemical and Cellular Characterization. Molecular Pharmacology, 2019, 95, 269-285.	1.0	21
12	Human diaphragm atrophy in amyotrophic lateral sclerosis is not predicted by routine respiratory measures. European Respiratory Journal, 2019, 53, 1801749.	3.1	14
13	<scp>P</scp> arkin deficiency modulates <scp>NLRP</scp> 3 inflammasome activation by attenuating an <scp>A</scp> 20â€dependent negative feedback loop. Glia, 2018, 66, 1736-1751.	2.5	100
14	Microglial glutamate release evoked by αâ€synuclein aggregates is prevented by dopamine. Glia, 2018, 66, 2353-2365.	2.5	39
15	Succinobucol, a Non-Statin Hypocholesterolemic Drug, Prevents Premotor Symptoms and Nigrostriatal Neurodegeneration in an Experimental Model of Parkinson's Disease. Molecular Neurobiology, 2017, 54, 1513-1530.	1.9	11
16	Identification of a Novel 1,4,8-Triazaphenanthrene Derivative as a Neuroprotectant for Dopamine Neurons Vulnerable in Parkinson's Disease. ACS Chemical Neuroscience, 2017, 8, 1222-1231.	1.7	4
17	The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. Journal of Neurochemistry, 2017, 142, 14-28.	2.1	33
18	Acylated and unacylated ghrelin confer neuroprotection to mesencephalic neurons. Neuroscience, 2017, 365, 137-145.	1.1	12

#	Article	IF	CITATIONS
19	Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress. Cell Death Discovery, 2016, 2, 16018.	2.0	27
20	Understanding Dopaminergic Cell Death Pathways in Parkinson Disease. Neuron, 2016, 90, 675-691.	3.8	460
21	The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations. Human Molecular Genetics, 2016, 25, ddw148.	1.4	105
22	Neuroprotective and neurorestorative potential of xenon. Cell Death and Disease, 2016, 7, e2182-e2182.	2.7	19
23	A simplified approach for efficient isolation of functional microglial cells: Application for modeling neuroinflammatory responses <i>in vitro</i> . Glia, 2016, 64, 1912-1924.	2.5	23
24	New 6-Aminoquinoxaline Derivatives with Neuroprotective Effect on Dopaminergic Neurons in Cellular and Animal Parkinson Disease Models. Journal of Medicinal Chemistry, 2016, 59, 6169-6186.	2.9	25
25	Role of pedunculopontine cholinergic neurons in the vulnerability of nigral dopaminergic neurons in Parkinson's disease. Experimental Neurology, 2016, 275, 209-219.	2.0	36
26	Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways. Neurotoxicity Research, 2016, 29, 447-459.	1.3	125
27	Signaling Mechanisms in the Nitric Oxide Donor- and Amphetamine-Induced Dopamine Release in Mesencephalic Primary Cultured Neurons. Neurotoxicity Research, 2016, 29, 92-104.	1.3	6
28	Acceleration of conduction velocity linked to clustering of nodal components precedes myelination. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E321-8.	3.3	65
29	The Sleep-Modulating Peptide Orexin-B Protects Midbrain Dopamine Neurons from Degeneration, Alone or in Cooperation with Nicotine. Molecular Pharmacology, 2015, 87, 525-532.	1.0	15
30	Sparing of orexinâ€ <scp>A</scp> and orexinâ€ <scp>B</scp> neurons in the hypothalamus and of orexin fibers in the substantia nigra of 1â€methylâ€4â€phenylâ€1,2,3,6â€ŧetrahydropyridineâ€ŧreated macaques. Euroj Journal of Neuroscience, 2015, 41, 129-136.	0e a12	24
31	Piperazine derivatives as iron chelators: a potential application in neurobiology. BioMetals, 2015, 28, 1043-1061.	1.8	15
32	Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease. European Journal of Medicinal Chemistry, 2015, 89, 467-479.	2.6	17
33	Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease. Journal of Neuroinflammation, 2014, 11, 86.	3.1	33
34	Specific needs of dopamine neurons for stimulation in order to survive: implication for Parkinson disease. FASEB Journal, 2013, 27, 3414-3423.	0.2	59
35	The Iron-Binding Protein Lactoferrin Protects Vulnerable Dopamine Neurons from Degeneration by Preserving Mitochondrial Calcium Homeostasis. Molecular Pharmacology, 2013, 84, 888-898	1.0	68
36	Bee Venom and Its Component Apamin as Neuroprotective Agents in a Parkinson Disease Mouse Model. PLoS ONE, 2013, 8, e61700.	1.1	93

#	Article	IF	CITATIONS
37	Probenecid potentiates <scp>MPTP</scp> / <scp>MPP</scp> ⁺ toxicity by interference with cellular energy metabolism. Journal of Neurochemistry, 2013, 127, 782-792.	2.1	25
38	Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Scientific Reports, 2013, 3, 1393.	1.6	134
39	Flavaglines as Potent Anticancer and Cytoprotective Agents. Journal of Medicinal Chemistry, 2012, 55, 10064-10073.	2.9	63
40	Methylxanthines and Ryanodine Receptor Channels. Handbook of Experimental Pharmacology, 2011, , 135-150.	0.9	13
41	Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca ²⁺ . FASEB Journal, 2011, 25, 2563-2573.	0.2	72
42	K _{ATP} channel blockade protects midbrain dopamine neurons by repressing a gliaâ€ŧoâ€neuron signaling cascade that ultimately disrupts mitochondrial calcium homeostasis. Journal of Neurochemistry, 2010, 114, 553-564.	2.1	23
43	Protection of midbrain dopaminergic neurons by the endâ€product of purine metabolism uric acid: potentiation by lowâ€level depolarization. Journal of Neurochemistry, 2009, 109, 1118-1128.	2.1	79
44	Atypical Parkinsonism in the French West Indies: The Plant Toxin Annonacin as a Potential Etiological Factor. , 2009, , 1-8.		1
45	Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. Journal of Neurochemistry, 2008, 79, 200-210.	2.1	130
46	Adenosine Prevents the Death of Mesencephalic Dopaminergic Neurons by a Mechanism that Involves Astrocytes. Journal of Neurochemistry, 2008, 72, 2074-2082.	2.1	50
47	Atypical parkinsonism in the Caribbean island of Guadeloupe: Etiological role of the mitochondrial complex I inhibitor annonacin. Movement Disorders, 2008, 23, 2122-2128.	2.2	33
48	Dissociated mesencephalic cultures. , 2008, , 389-408.		0
49	Modelling Parkinsonâ€like neurodegeneration via osmotic minipump delivery of MPTP and probenecid. Journal of Neurochemistry, 2008, 107, 701-711.	2.1	67
50	Paraxanthine, the Primary Metabolite of Caffeine, Provides Protection against Dopaminergic Cell Death via Stimulation of Ryanodine Receptor Channels. Molecular Pharmacology, 2008, 74, 980-989.	1.0	86
51	The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3585-3590.	3.3	245
52	Glia Protects Neurons against Extracellular Human Neuromelanin. Neurodegenerative Diseases, 2007, 4, 218-226.	0.8	18
53	Annonacin, a Natural Mitochondrial Complex I Inhibitor, Causes Tau Pathology in Cultured Neurons. Journal of Neuroscience, 2007, 27, 7827-7837.	1.7	176
54	Role of activity-dependent mechanisms in the control of dopaminergic neuron survival. Journal of Neurochemistry, 2007, 101, 289-297.	2.1	42

#	Article	IF	CITATIONS
55	Dopaminergic Neurons Reduced to Silence by Oxidative Stress: An Early Step in the Death Cascade in Parkinson's Disease?. Science Signaling, 2006, 2006, pe19-pe19.	1.6	9
56	The Phenotypic Differentiation of Locus Ceruleus Noradrenergic Neurons Mediated by Brain-Derived Neurotrophic Factor Is Enhanced by Corticotropin Releasing Factor through the Activation of a cAMP-Dependent Signaling Pathway. Molecular Pharmacology, 2006, 70, 30-40.	1.0	71
57	Is atypical parkinsonism in the Caribbean caused by the consumption of Annonacae?. , 2006, , 153-157.		25
58	Proliferation of microglial cells induced by 1-methyl-4-phenylpyridinium in mesencephalic cultures results from an astrocyte-dependent mechanism: role of granulocyte macrophage colony-stimulating factor. Journal of Neurochemistry, 2005, 95, 1069-1077.	2.1	31
59	The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. Journal of Neurochemistry, 2005, 95, 930-939.	2.1	183
60	Experimental evidence for a toxic etiology of tropical parkinsonism. Movement Disorders, 2005, 20, 118-119.	2.2	18
61	Substance P, Neurokinins A and B, and Synthetic Tachykinin Peptides Protect Mesencephalic Dopaminergic Neurons in Culture via an Activity-Dependent Mechanism. Molecular Pharmacology, 2005, 68, 1214-1224.	1.0	38
62	Granulocyte colony-stimulating factor is not protective against selective dopaminergic cell death in vitro. Neuroscience Letters, 2005, 383, 44-48.	1.0	5
63	The Neurotransmitter Noradrenaline Rescues Septal Cholinergic Neurons in Culture from Degeneration Caused by Low-Level Oxidative Stress. Molecular Pharmacology, 2005, 67, 1882-1891.	1.0	58
64	Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. Journal of Neurochemistry, 2004, 88, 63-69.	2.1	187
65	Rescue of Mesencephalic Dopaminergic Neurons in Culture by Low-Level Stimulation of Voltage-Gated Sodium Channels. Journal of Neuroscience, 2004, 24, 5922-5930.	1.7	106
66	Differential activation of astrocytes and microglia during post-natal development of dopaminergic neuronal death in the weaver mouse. Developmental Brain Research, 2003, 145, 9-17.	2.1	12
67	Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. Journal of Neurochemistry, 2003, 84, 491-502.	2.1	284
68	Ceramide increases mitochondrial free calcium levels via caspase 8 and Bid: role in initiation of cell death. Journal of Neurochemistry, 2003, 84, 643-654.	2.1	62
69	Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. Journal of Neurochemistry, 2003, 86, 1297-1307.	2.1	239
70	Prevention of Dopaminergic Neuronal Death by Cyclic AMP in Mixed Neuronal/Glial Mesencephalic Cultures Requires the Repression of Presumptive Astrocytes. Molecular Pharmacology, 2003, 64, 578-586.	1.0	33
71	The Role of Glial Reaction and Inflammation in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 214-228.	1.8	394
72	Activation of the Mitogen-Activated Protein Kinase (ERK1/2) Signaling Pathway by Cyclic AMP Potentiates the Neuroprotective Effect of the Neurotransmitter Noradrenaline on Dopaminergic Neurons. Molecular Pharmacology, 2002, 62, 1043-1052.	1.0	73

#	Article	IF	CITATIONS
73	Molecular Mechanisms of Neuronal Cell Death: Implications for Nuclear Factors Responding to cAMP and Phorbol Esters. Molecular and Cellular Neurosciences, 2002, 21, 1-14.	1.0	17
74	Toxicity of Annonaceae for dopaminergic neurons: Potential role in atypical parkinsonism in Guadeloupe. Movement Disorders, 2002, 17, 84-90.	2.2	96
75	The relationship between differentiation and survival in PC12 cells treated with cyclic adenosine monophosphate in the presence of epidermal growth factor or nerve growth factor. Neuroscience Letters, 2001, 297, 133-136.	1.0	28
76	ls Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson's disease?. Journal of Neurochemistry, 2001, 76, 1785-1793.	2.1	138
77	Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors. Journal of Neurochemistry, 2001, 78, 163-174.	2.1	35
78	Mitochondrial free calcium levels (Rhod-2 fluorescence) and ultrastructural alterations in neuronally differentiated PC12 cells during ceramide-dependent cell death. Journal of Comparative Neurology, 2000, 426, 297-315.	0.9	42
79	Mechanisms of apoptosis in PC12 cells irreversibly differentiated with nerve growth factor and cyclic AMP. Brain Research, 1999, 821, 60-68.	1.1	39
80	Survival factors promote BDNF protein expression in mesencephalic dopaminergic neurons. NeuroReport, 1999, 10, 801-805.	0.6	17
81	Rescue of Mesencephalic Dopamine Neurons by Anticancer Drug Cytosine Arabinoside. Journal of Neurochemistry, 1997, 69, 1499-1507.	2.1	53
82	Mitochondrial Free Radical Signal in Ceramideâ€Dependent Apoptosis: A Putative Mechanism for Neuronal Death in Parkinson's Disease. Journal of Neurochemistry, 1997, 69, 1612-1621.	2.1	170
83	Ceramide Induces Apoptosis in Cultured Mesencephalic Neurons. Journal of Neurochemistry, 1996, 66, 733-739.	2.1	176
84	Chronic Activation of the Cyclic AMP Signaling Pathway Promotes Development and Longâ€Term Survival of Mesencephalic Dopaminergic Neurons. Journal of Neurochemistry, 1996, 67, 1633-1642.	2.1	84
85	Synergistic Differentiation by Chronic Exposure to Cyclic AMP and Nerve Growth Factor Renders Rat Phaeochromocytoma PC12 Cells Totally Dependent upon Trophic Support for Survival. European Journal of Neuroscience, 1995, 7, 251-260.	1.2	27
86	Morphological and Molecular Characterization of the Response of Differentiated PC12 Cells to Calcium Stress. European Journal of Neuroscience, 1994, 6, 577-586.	1.2	30
87	Differential expression of tyrosine hydroxylase and membrane dopamine transporter genes in subpopulations of dopaminergic neurons of the rat mesencephalon. Molecular Brain Research, 1994, 22, 29-38.	2.5	127
88	Induction of calbindin-D 28K gene and protein expression by physiological stimuli but not in calcium-mediated degeneration in rat PC12 pheochromocytoma cells. FEBS Letters, 1994, 351, 53-57.	1.3	15
89	Selective and Nonselective Protective Effects of Brain-Derived Neurotrophic Factor for Dopaminergic Neurons In Vitro. Journal of Neurochemistry, 1993, 60, 1582-1582.	2.1	3
90	The glutamate antagonist, MK-801, does not prevent dopaminergic cell death induced by the 1-methyl-4-phenylpyridinium ion (MPP+) in rat dissociated mesencephalic cultures. Brain Research, 1992, 597, 233-240.	1.1	37

#	ARTICLE	IF	CITATIONS
91	Toxic Effects of Iron for Cultured Mesencephalic Dopaminergic Neurons Derived from Rat Embryonic Brains. Journal of Neurochemistry, 1992, 59, 118-127.	2.1	48
92	No relevance to Parkinson's. Nature, 1991, 352, 573-573.	13.7	4
93	Tyrosine Hydroxylase mRNA Expression by Dopaminergic Neurons in Culture: Effect of 1 -Methyl-4-Phenylpyridinium Treatment. Journal of Neurochemistry, 1991, 57, 527-532.	2.1	17
94	Chapter 12 Selective and non-selective trophic actions on central cholinergic and dopaminergic neurons in vitro. Progress in Brain Research, 1990, 86, 145-155.	0.9	1
95	Potential environmental neurotoxins related to 1-methyl-4-phenylpyridinium: Selective toxicity of 1-methyl-4-(4â€2-acetamidophenyl)-pyridinium and 1-methyl-4-cyclohexylpyridinium for dopaminergic neurons in culture. Experimental Neurology, 1990, 108, 141-150.	2.0	11