Patrick P Michel List of Publications by Year in descending order Source: https://exaly.com/author-pdf/290480/publications.pdf Version: 2024-02-01 95 papers 5,997 citations 39 h-index 74160 75 g-index 97 all docs 97 docs citations 97 times ranked 7204 citing authors | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 1 | Understanding Dopaminergic Cell Death Pathways in Parkinson Disease. Neuron, 2016, 90, 675-691. | 8.1 | 460 | | 2 | The Role of Glial Reaction and Inflammation in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 214-228. | 3.8 | 394 | | 3 | Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. Journal of Neurochemistry, 2003, 84, 491-502. | 3.9 | 284 | | 4 | The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3585-3590. | 7.1 | 245 | | 5 | Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. Journal of Neurochemistry, 2003, 86, 1297-1307. | 3.9 | 239 | | 6 | Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. Journal of Neurochemistry, 2004, 88, 63-69. | 3.9 | 187 | | 7 | The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. Journal of Neurochemistry, 2005, 95, 930-939. | 3.9 | 183 | | 8 | Ceramide Induces Apoptosis in Cultured Mesencephalic Neurons. Journal of Neurochemistry, 1996, 66, 733-739. | 3.9 | 176 | | 9 | Annonacin, a Natural Mitochondrial Complex I Inhibitor, Causes Tau Pathology in Cultured Neurons.
Journal of Neuroscience, 2007, 27, 7827-7837. | 3.6 | 176 | | 10 | Mitochondrial Free Radical Signal in Ceramideâ€Dependent Apoptosis: A Putative Mechanism for Neuronal Death in Parkinson's Disease. Journal of Neurochemistry, 1997, 69, 1612-1621. | 3.9 | 170 | | 11 | Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson's disease?.
Journal of Neurochemistry, 2001, 76, 1785-1793. | 3.9 | 138 | | 12 | Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Scientific Reports, 2013, 3, 1393. | 3.3 | 134 | | 13 | Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. Journal of Neurochemistry, 2008, 79, 200-210. | 3.9 | 130 | | 14 | Differential expression of tyrosine hydroxylase and membrane dopamine transporter genes in subpopulations of dopaminergic neurons of the rat mesencephalon. Molecular Brain Research, 1994, 22, 29-38. | 2.3 | 127 | | 15 | Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways. Neurotoxicity Research, 2016, 29, 447-459. | 2.7 | 125 | | 16 | Rescue of Mesencephalic Dopaminergic Neurons in Culture by Low-Level Stimulation of Voltage-Gated Sodium Channels. Journal of Neuroscience, 2004, 24, 5922-5930. | 3.6 | 106 | | 17 | The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations. Human Molecular Genetics, 2016, 25, ddw148. | 2.9 | 105 | | 18 | <scp>P</scp> arkin deficiency modulates <scp>NLRP</scp> 3 inflammasome activation by attenuating an <scp>A</scp> 20â€dependent negative feedback loop. Glia, 2018, 66, 1736-1751. | 4.9 | 100 | | # | Article | IF | Citations | |----|---|-----|-----------| | 19 | Toxicity of Annonaceae for dopaminergic neurons: Potential role in atypical parkinsonism in Guadeloupe. Movement Disorders, 2002, 17, 84-90. | 3.9 | 96 | | 20 | Bee Venom and Its Component Apamin as Neuroprotective Agents in a Parkinson Disease Mouse Model. PLoS ONE, 2013, 8, e61700. | 2.5 | 93 | | 21 | Cannabidiol prevents LPSâ€induced microglial inflammation by inhibiting ROS/NFâ€ÎºBâ€dependent signaling and glucose consumption. Glia, 2020, 68, 561-573. | 4.9 | 93 | | 22 | Paraxanthine, the Primary Metabolite of Caffeine, Provides Protection against Dopaminergic Cell Death via Stimulation of Ryanodine Receptor Channels. Molecular Pharmacology, 2008, 74, 980-989. | 2.3 | 86 | | 23 | Chronic Activation of the Cyclic AMP Signaling Pathway Promotes Development and Longâ€Term Survival of Mesencephalic Dopaminergic Neurons. Journal of Neurochemistry, 1996, 67, 1633-1642. | 3.9 | 84 | | 24 | Protection of midbrain dopaminergic neurons by the endâ€product of purine metabolism uric acid: potentiation by lowâ€level depolarization. Journal of Neurochemistry, 2009, 109, 1118-1128. | 3.9 | 79 | | 25 | Activation of the Mitogen-Activated Protein Kinase (ERK1/2) Signaling Pathway by Cyclic AMP Potentiates the Neuroprotective Effect of the Neurotransmitter Noradrenaline on Dopaminergic Neurons. Molecular Pharmacology, 2002, 62, 1043-1052. | 2.3 | 73 | | 26 | Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca ²⁺ . FASEB Journal, 2011, 25, 2563-2573. | 0.5 | 72 | | 27 | The Phenotypic Differentiation of Locus Ceruleus Noradrenergic Neurons Mediated by Brain-Derived
Neurotrophic Factor Is Enhanced by Corticotropin Releasing Factor through the Activation of a
cAMP-Dependent Signaling Pathway. Molecular Pharmacology, 2006, 70, 30-40. | 2.3 | 71 | | 28 | The Iron-Binding Protein Lactoferrin Protects Vulnerable Dopamine Neurons from Degeneration by Preserving Mitochondrial Calcium Homeostasis. Molecular Pharmacology, 2013, 84, 888-898. | 2.3 | 68 | | 29 | Modelling Parkinsonâ€like neurodegeneration via osmotic minipump delivery of MPTP and probenecid.
Journal of Neurochemistry, 2008, 107, 701-711. | 3.9 | 67 | | 30 | Acceleration of conduction velocity linked to clustering of nodal components precedes myelination. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E321-8. | 7.1 | 65 | | 31 | Flavaglines as Potent Anticancer and Cytoprotective Agents. Journal of Medicinal Chemistry, 2012, 55, 10064-10073. | 6.4 | 63 | | 32 | Ceramide increases mitochondrial free calcium levels via caspase 8 and Bid: role in initiation of cell death. Journal of Neurochemistry, 2003, 84, 643-654. | 3.9 | 62 | | 33 | Specific needs of dopamine neurons for stimulation in order to survive: implication for Parkinson disease. FASEB Journal, 2013, 27, 3414-3423. | 0.5 | 59 | | 34 | The Neurotransmitter Noradrenaline Rescues Septal Cholinergic Neurons in Culture from Degeneration Caused by Low-Level Oxidative Stress. Molecular Pharmacology, 2005, 67, 1882-1891. | 2.3 | 58 | | 35 | Rescue of Mesencephalic Dopamine Neurons by Anticancer Drug Cytosine Arabinoside. Journal of Neurochemistry, 1997, 69, 1499-1507. | 3.9 | 53 | | 36 | Adenosine Prevents the Death of Mesencephalic Dopaminergic Neurons by a Mechanism that Involves Astrocytes. Journal of Neurochemistry, 1999, 72, 2074-2082. | 3.9 | 50 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 37 | Toxic Effects of Iron for Cultured Mesencephalic Dopaminergic Neurons Derived from Rat Embryonic Brains. Journal of Neurochemistry, 1992, 59, 118-127. | 3.9 | 48 | | 38 | Mitochondrial free calcium levels (Rhod-2 fluorescence) and ultrastructural alterations in neuronally differentiated PC12 cells during ceramide-dependent cell death. Journal of Comparative Neurology, 2000, 426, 297-315. | 1.6 | 42 | | 39 | Role of activity-dependent mechanisms in the control of dopaminergic neuron survival. Journal of Neurochemistry, 2007, 101, 289-297. | 3.9 | 42 | | 40 | Mechanisms of apoptosis in PC12 cells irreversibly differentiated with nerve growth factor and cyclic AMP. Brain Research, 1999, 821, 60-68. | 2.2 | 39 | | 41 | Microglial glutamate release evoked by αâ€synuclein aggregates is prevented by dopamine. Glia, 2018, 66, 2353-2365. | 4.9 | 39 | | 42 | Rifampicin and Its Derivative Rifampicin Quinone Reduce Microglial Inflammatory Responses and Neurodegeneration Induced In Vitro by α-Synuclein Fibrillary Aggregates. Cells, 2019, 8, 776. | 4.1 | 39 | | 43 | Substance P, Neurokinins A and B, and Synthetic Tachykinin Peptides Protect Mesencephalic
Dopaminergic Neurons in Culture via an Activity-Dependent Mechanism. Molecular Pharmacology,
2005, 68, 1214-1224. | 2.3 | 38 | | 44 | The glutamate antagonist, MK-801, does not prevent dopaminergic cell death induced by the 1-methyl-4-phenylpyridinium ion (MPP+) in rat dissociated mesencephalic cultures. Brain Research, 1992, 597, 233-240. | 2.2 | 37 | | 45 | Role of pedunculopontine cholinergic neurons in the vulnerability of nigral dopaminergic neurons in Parkinson's disease. Experimental Neurology, 2016, 275, 209-219. | 4.1 | 36 | | 46 | Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors. Journal of Neurochemistry, 2001, 78, 163-174. | 3.9 | 35 | | 47 | Doxycycline inhibits α-synuclein-associated pathologies in vitro and in vivo. Neurobiology of Disease, 2021, 151, 105256. | 4.4 | 35 | | 48 | Prevention of Dopaminergic Neuronal Death by Cyclic AMP in Mixed Neuronal/Glial Mesencephalic Cultures Requires the Repression of Presumptive Astrocytes. Molecular Pharmacology, 2003, 64, 578-586. | 2.3 | 33 | | 49 | Atypical parkinsonism in the Caribbean island of Guadeloupe: Etiological role of the mitochondrial complex I inhibitor annonacin. Movement Disorders, 2008, 23, 2122-2128. | 3.9 | 33 | | 50 | Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease. Journal of Neuroinflammation, 2014, 11, 86. | 7.2 | 33 | | 51 | The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. Journal of Neurochemistry, 2017, 142, 14-28. | 3.9 | 33 | | 52 | Proliferation of microglial cells induced by 1-methyl-4-phenylpyridinium in mesencephalic cultures results from an astrocyte-dependent mechanism: role of granulocyte macrophage colony-stimulating factor. Journal of Neurochemistry, 2005, 95, 1069-1077. | 3.9 | 31 | | 53 | Morphological and Molecular Characterization of the Response of Differentiated PC12 Cells to Calcium Stress. European Journal of Neuroscience, 1994, 6, 577-586. | 2.6 | 30 | | 54 | The relationship between differentiation and survival in PC12 cells treated with cyclic adenosine monophosphate in the presence of epidermal growth factor or nerve growth factor. Neuroscience Letters, 2001, 297, 133-136. | 2.1 | 28 | | # | Article | IF | Citations | |----|---|----------------|-----------| | 55 | Synergistic Differentiation by Chronic Exposure to Cyclic AMP and Nerve Growth Factor Renders Rat
Phaeochromocytoma PC12 Cells Totally Dependent upon Trophic Support for Survival. European
Journal of Neuroscience, 1995, 7, 251-260. | 2.6 | 27 | | 56 | Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress. Cell Death Discovery, 2016, 2, 16018. | 4.7 | 27 | | 57 | Probenecid potentiates <scp>MPTP</scp> / <scp>MPP</scp> ⁺ toxicity by interference with cellular energy metabolism. Journal of Neurochemistry, 2013, 127, 782-792. | 3.9 | 25 | | 58 | New 6-Aminoquinoxaline Derivatives with Neuroprotective Effect on Dopaminergic Neurons in Cellular and Animal Parkinson Disease Models. Journal of Medicinal Chemistry, 2016, 59, 6169-6186. | 6.4 | 25 | | 59 | Is atypical parkinsonism in the Caribbean caused by the consumption of Annonacae?., 2006,, 153-157. | | 25 | | 60 | Sparing of orexinâ€∢scp>A⟨/scp> and orexinâ€∢scp>B⟨/scp> neurons in the hypothalamus and of orexin fibers in the substantia nigra of 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridineâ€treated macaques. Europ Journal of Neuroscience, 2015, 41, 129-136. | 0e 2 16 | 24 | | 61 | K _{ATP} channel blockade protects midbrain dopamine neurons by repressing a gliaâ€toâ€neuron signaling cascade that ultimately disrupts mitochondrial calcium homeostasis. Journal of Neurochemistry, 2010, 114, 553-564. | 3.9 | 23 | | 62 | A simplified approach for efficient isolation of functional microglial cells: Application for modeling neuroinflammatory responses <i>in vitro</i> . Glia, 2016, 64, 1912-1924. | 4.9 | 23 | | 63 | S29434, a Quinone Reductase 2 Inhibitor: Main Biochemical and Cellular Characterization. Molecular Pharmacology, 2019, 95, 269-285. | 2.3 | 21 | | 64 | Neuroprotective and neurorestorative potential of xenon. Cell Death and Disease, 2016, 7, e2182-e2182. | 6.3 | 19 | | 65 | Experimental evidence for a toxic etiology of tropical parkinsonism. Movement Disorders, 2005, 20, 118-119. | 3.9 | 18 | | 66 | Glia Protects Neurons against Extracellular Human Neuromelanin. Neurodegenerative Diseases, 2007, 4, 218-226. | 1.4 | 18 | | 67 | Contributive Role of TNF-α to L-DOPA-Induced Dyskinesia in a Unilateral 6-OHDA Lesion Model of Parkinson's Disease. Frontiers in Pharmacology, 2020, 11, 617085. | 3.5 | 18 | | 68 | Tyrosine Hydroxylase mRNA Expression by Dopaminergic Neurons in Culture: Effect of 1 -Methyl-4-Phenylpyridinium Treatment. Journal of Neurochemistry, 1991, 57, 527-532. | 3.9 | 17 | | 69 | Survival factors promote BDNF protein expression in mesencephalic dopaminergic neurons.
NeuroReport, 1999, 10, 801-805. | 1.2 | 17 | | 70 | Molecular Mechanisms of Neuronal Cell Death: Implications for Nuclear Factors Responding to cAMP and Phorbol Esters. Molecular and Cellular Neurosciences, 2002, 21, 1-14. | 2,2 | 17 | | 71 | Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease. European Journal of Medicinal Chemistry, 2015, 89, 467-479. | 5.5 | 17 | | 72 | Induction of calbindin-D 28K gene and protein expression by physiological stimuli but not in calcium-mediated degeneration in rat PC12 pheochromocytoma cells. FEBS Letters, 1994, 351, 53-57. | 2.8 | 15 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 73 | The Sleep-Modulating Peptide Orexin-B Protects Midbrain Dopamine Neurons from Degeneration, Alone or in Cooperation with Nicotine. Molecular Pharmacology, 2015, 87, 525-532. | 2.3 | 15 | | 74 | Piperazine derivatives as iron chelators: a potential application in neurobiology. BioMetals, 2015, 28, 1043-1061. | 4.1 | 15 | | 75 | Human diaphragm atrophy in amyotrophic lateral sclerosis is not predicted by routine respiratory measures. European Respiratory Journal, 2019, 53, 1801749. | 6.7 | 14 | | 76 | Doxycycline Interferes With Tau Aggregation and Reduces Its Neuronal Toxicity. Frontiers in Aging Neuroscience, 2021, 13, 635760. | 3.4 | 14 | | 77 | Methylxanthines and Ryanodine Receptor Channels. Handbook of Experimental Pharmacology, 2011, , 135-150. | 1.8 | 13 | | 78 | CMT-3 targets different \hat{l}_{\pm} -synuclein aggregates mitigating their toxic and inflammogenic effects. Scientific Reports, 2020, 10, 20258. | 3.3 | 13 | | 79 | Differential activation of astrocytes and microglia during post-natal development of dopaminergic neuronal death in the weaver mouse. Developmental Brain Research, 2003, 145, 9-17. | 1.7 | 12 | | 80 | Acylated and unacylated ghrelin confer neuroprotection to mesencephalic neurons. Neuroscience, 2017, 365, 137-145. | 2.3 | 12 | | 81 | Potential environmental neurotoxins related to 1-methyl-4-phenylpyridinium: Selective toxicity of 1-methyl-4-(43 e 2 -acetamidophenyl)-pyridinium and 1-methyl-4-cyclohexylpyridinium for dopaminergic neurons in culture. Experimental Neurology, 1990, 108, 141-150. | 4.1 | 11 | | 82 | Succinobucol, a Non-Statin Hypocholesterolemic Drug, Prevents Premotor Symptoms and Nigrostriatal Neurodegeneration in an Experimental Model of Parkinson's Disease. Molecular Neurobiology, 2017, 54, 1513-1530. | 4.0 | 11 | | 83 | 3-O-sulfated heparan sulfate interactors target synaptic adhesion molecules from neonatal mouse brain and inhibit neural activity and synaptogenesis in vitro. Scientific Reports, 2020, 10, 19114. | 3.3 | 10 | | 84 | The Chemically-Modified Tetracycline COL-3 and Its Parent Compound Doxycycline Prevent Microglial Inflammatory Responses by Reducing Glucose-Mediated Oxidative Stress. Cells, 2021, 10, 2163. | 4.1 | 10 | | 85 | Dopaminergic Neurons Reduced to Silence by Oxidative Stress: An Early Step in the Death Cascade in Parkinson's Disease?. Science Signaling, 2006, 2006, pe19-pe19. | 3.6 | 9 | | 86 | Neuroprotection of dopamine neurons by xenon against low-level excitotoxic insults is not reproduced by other noble gases. Journal of Neural Transmission, 2020, 127, 27-34. | 2.8 | 8 | | 87 | Modelling $\hat{l}\pm$ -Synuclein Aggregation and Neurodegeneration with Fibril Seeds in Primary Cultures of Mouse Dopaminergic Neurons. Cells, 2022, 11, 1640. | 4.1 | 8 | | 88 | Signaling Mechanisms in the Nitric Oxide Donor- and Amphetamine-Induced Dopamine Release in Mesencephalic Primary Cultured Neurons. Neurotoxicity Research, 2016, 29, 92-104. | 2.7 | 6 | | 89 | Granulocyte colony-stimulating factor is not protective against selective dopaminergic cell death in vitro. Neuroscience Letters, 2005, 383, 44-48. | 2.1 | 5 | | 90 | No relevance to Parkinson's. Nature, 1991, 352, 573-573. | 27.8 | 4 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 91 | Identification of a Novel 1,4,8-Triazaphenanthrene Derivative as a Neuroprotectant for Dopamine Neurons Vulnerable in Parkinson's Disease. ACS Chemical Neuroscience, 2017, 8, 1222-1231. | 3.5 | 4 | | 92 | Selective and Nonselective Protective Effects of Brain-Derived Neurotrophic Factor for Dopaminergic Neurons In Vitro. Journal of Neurochemistry, 1993, 60, 1582-1582. | 3.9 | 3 | | 93 | Chapter 12 Selective and non-selective trophic actions on central cholinergic and dopaminergic neurons in vitro. Progress in Brain Research, 1990, 86, 145-155. | 1.4 | 1 | | 94 | Atypical Parkinsonism in the French West Indies: The Plant Toxin Annonacin as a Potential Etiological Factor., 2009,, 1-8. | | 1 | | 95 | Dissociated mesencephalic cultures. , 2008, , 389-408. | | 0 |