
Karen Allacker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2904598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainability assessment of energy saving measures: A multi-criteria approach for residential buildings retrofitting—A case study of the Spanish housing stock. Energy and Buildings, 2016, 116, 384-394.	6.7	148
2	Environmental product declarations entering the building sector: critical reflections based on 5 to 10Âyears experience in different European countries. International Journal of Life Cycle Assessment, 2015, 20, 1199-1212.	4.7	113
3	Biogenic carbon in buildings: a critical overview of LCA methods. Buildings and Cities, 2020, 1, 504-524.	2.3	110
4	The search for an appropriate end-of-life formula for the purpose of the European Commission Environmental Footprint initiative. International Journal of Life Cycle Assessment, 2017, 22, 1441-1458.	4.7	98
5	Allocation solutions for secondary material production and end of life recovery: Proposals for product policy initiatives. Resources, Conservation and Recycling, 2014, 88, 1-12.	10.8	96
6	Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Buildings and Cities, 2020, 1, 429-452.	2.3	50
7	Life cycle assessment and life cycle costing of road infrastructure in residential neighbourhoods. International Journal of Life Cycle Assessment, 2017, 22, 938-951.	4.7	49
8	Strategies to Improve the Energy Performance of Buildings: A Review of Their Life Cycle Impact. Buildings, 2018, 8, 105.	3.1	49
9	Environmental modelling of building stocks – An integrated review of life cycle-based assessment models to support EU policy making. Renewable and Sustainable Energy Reviews, 2021, 151, 111550.	16.4	48
10	Current trends and limitations of life cycle assessment applied to the urban scale: critical analysis and review of selected literature. International Journal of Life Cycle Assessment, 2019, 24, 1174-1193.	4.7	47
11	The European Commission Organisation Environmental Footprint method: comparison with other methods, and rationales for key requirements. International Journal of Life Cycle Assessment, 2014, 19, 387-404.	4.7	45
12	Energy simulation and LCA for macro-scale analysis of eco-innovations in the housing stock. International Journal of Life Cycle Assessment, 2019, 24, 989-1008.	4.7	43
13	Energy savings from housing: Ineffective renovation subsidies vs efficient demolition and reconstruction incentives. Energy Policy, 2015, 86, 697-704.	8.8	36
14	Future heating and cooling degree days for Belgium under a high-end climate change scenario. Energy and Buildings, 2020, 216, 109935.	6.7	36
15	Comparing the European Commission product environmental footprint method with other environmental accounting methods. International Journal of Life Cycle Assessment, 2015, 20, 389-404.	4.7	34
16	Environmental and economic optimisation of the floor on grade in residential buildings. International Journal of Life Cycle Assessment, 2012, 17, 813-827.	4.7	31
17	Design for the Ecological Age: Rethinking the Role of Sustainability in Architectural Education. Journal of Architectural Education, 2013, 67, 175-185.	0.1	31
18	Land use impact assessment in the construction sector: an analysis of LCIA models and case study application. International Journal of Life Cycle Assessment, 2014, 19, 1799-1809.	4.7	30

KAREN ALLACKER

#	Article	IF	CITATIONS
19	Identification of environmental and financial cost efficient heating and ventilation services for a typical residential building in Belgium. Journal of Cleaner Production, 2013, 57, 188-199.	9.3	28
20	End-of-life modelling of buildings to support more informed decisions towards achieving circular economy targets. International Journal of Life Cycle Assessment, 2020, 25, 2122-2139.	4.7	27
21	Accounting for biogenic carbon and end-of-life allocation in life cycle assessment of multi-output wood cascade systems. Journal of Cleaner Production, 2020, 275, 122795.	9.3	24
22	A design tool to assess the heating energy demand and the associated financial and environmental impact in neighbourhoods. Energy and Buildings, 2017, 152, 516-523.	6.7	21
23	Hospital Building Sustainability: The Experience in using Qualitative Tools and Steps Towards the Life Cycle Approach. Procedia Environmental Sciences, 2017, 38, 445-451.	1.4	15
24	Life-cycle assessment of timber frame constructions $\hat{a} \in$ "The case of rooftop extensions. Journal of Cleaner Production, 2019, 216, 333-345.	9.3	15
25	Development of an Approach to Assess the Life Cycle Environmental Impacts and Costs of General Hospitals through the Analysis of a Belgian Case. Sustainability, 2019, 11, 856.	3.2	14
26	Integrating long term temporal changes in the Belgian electricity mix in environmental attributional life cycle assessment of buildings. Journal of Cleaner Production, 2021, 297, 126624.	9.3	13
27	MOVING TOWARDS A MORE SUSTAINABLE BELGIAN DWELLING STOCK: THE PASSIVE STANDARD AS THE NEXT STEP?. Journal of Green Building, 2013, 8, 112-132.	0.8	12
28	The Environmental Footprint of Cities: Insights in the Steps forward to a New Methodological Approach. Procedia Environmental Sciences, 2017, 38, 635-642.	1.4	11
29	An Approach for Calculating the Environmental External Costs of the Belgian Building Sector. Journal of Industrial Ecology, 2012, 16, 710-721.	5.5	10
30	Geometric service life modelling and discounting, a practical method for parametrised life cycle assessment. International Journal of Life Cycle Assessment, 2017, 22, 1191-1209.	4.7	10
31	Circularity of building stocks: modelling building joints and their disassembly in a 3D city model. Procedia CIRP, 2022, 105, 712-720.	1.9	9
32	Future Weather Data for Dynamic Building Energy Simulations: Overview of Available Data and Presentation of Newly Derived Data for Belgium. Energy, Environment, and Sustainability, 2019, , 111-138.	1.0	7
33	The Assessment of Urban Environmental Impacts through the City Environmental Footprint: Methodological Framework and First Approach to the Built Environment. Procedia CIRP, 2018, 69, 83-88.	1.9	6
34	The population equivalent as a novel approach for life cycle assessment of cities and inter-city comparisons. International Journal of Life Cycle Assessment, 2021, 26, 1623-1647.	4.7	5
35	Using data-driven models to estimate the energy use of buildings based on a building stock model. IOP Conference Series: Earth and Environmental Science, 0, 588, 032006.	0.3	5
36	Dynamic Versus Static Life Cycle Assessment of Energy Renovation for Residential Buildings. Sustainability, 2022, 14, 6838.	3.2	5

KAREN ALLACKER

#	Article	IF	CITATIONS
37	Environmental and Financial Life Cycle Assessment of â€~Open-renovation-systems': Methodology and Case Study. Energy Procedia, 2016, 96, 529-539.	1.8	4
38	Environmental Performance of Advanced Window Systems in Patient Rooms. Procedia CIRP, 2018, 69, 166-171.	1.9	4
39	Urban GHG accounting: discrepancies, constraints and opportunities. Buildings and Cities, 2021, 2, 21-35.	2.3	4
40	Integrated energy, daylighting and visual comfort analysis of window systems in patient rooms. Science and Technology for the Built Environment, 2021, 27, 1040-1055.	1.7	4
41	Bioclimatic Prosthesis: Experimental dataset for a low-cost Trombe wall to existing social housing refurbishment for an intermediate valley (Chillán) city in the south of Chile. Data in Brief, 2020, 30, 105547.	1.0	3
42	Developing a Building Stock Model to Enable Clustered Renovation—The City of Leuven as Case Study. Sustainability, 2022, 14, 5769.	3.2	3
43	Visual tool for sustainable buildings: A design approach with various data visualisation techniques. Journal of Building Engineering, 2022, 56, 104741.	3.4	3
44	Early design phase energy predictions using a semi-dynamic approach as an accurate proxy for dynamic energy simulations. Energy and Buildings, 2022, 254, 111341.	6.7	1
45	Modelling the Influence of Urban Planning on the Financial and Environmental Impact of Neighbourhoods. Energy, Environment, and Sustainability, 2019, , 17-37.	1.0	0