Christopher G Eckert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2904351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Evolutionary Enigma of Mixed Mating Systems in Plants: Occurrence, Theoretical Explanations, and Empirical Evidence. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 47-79.	3.8	910
2	Plant mating systems in a changing world. Trends in Ecology and Evolution, 2010, 25, 35-43.	4.2	458
3	Are Species' Range Limits Simply Niche Limits Writ Large? A Review of Transplant Experiments beyond the Range. American Naturalist, 2014, 183, 157-173.	1.0	323
4	The loss of sex in clonal plants. Evolutionary Ecology, 2001, 15, 501-520.	0.5	317
5	Evolution of dispersal and mating systems along geographic gradients: implications for shifting ranges. Functional Ecology, 2014, 28, 5-21.	1.7	125
6	Increased seed dispersal potential towards geographic range limits in a Pacific coast dune plant. New Phytologist, 2008, 178, 424-435.	3.5	100
7	Does self-pollination provide reproductive Assurance in Aquilegia Canadensis (Ranunculaceae)?. American Journal of Botany, 1998, 85, 919-924.	0.8	90
8	TESTING THE ABUNDANT CENTER MODEL USING RANGE-WIDE DEMOGRAPHIC SURVEYS OF TWO COASTAL DUNE PLANTS. Ecology, 2007, 88, 1747-1758.	1.5	90
9	Global biogeography of mating system variation in seed plants. Ecology Letters, 2017, 20, 375-384.	3.0	85
10	SEQUENTIAL DECLINE IN ALLOCATION AMONG FLOWERS WITHIN INFLORESCENCES: PROXIMATE MECHANISMS AND ADAPTIVE SIGNIFICANCE. Ecology, 2004, 85, 1675-1687.	1.5	77
11	Population genetic consequences of extreme variation in sexual and clonal reproduction in an aquatic plant. Molecular Ecology, 2003, 12, 331-344.	2.0	76
12	Broad geographic covariation between floral traits and the mating system in Camissoniopsis cheiranthifolia (Onagraceae): multiple stable mixed mating systems across the species' range?. Annals of Botany, 2012, 109, 599-611.	1.4	63
13	INTERACTION BETWEEN FOURNDER EFFECT AND SELECTION DURING BIOLOGICAL INVASION IN AN AQUATIC PLANT. Evolution; International Journal of Organic Evolution, 2005, 59, 1900-1913.	1.1	59
14	GENETIC DRIFT AND FOUNDER EFFECT IN NATIVE VERSUS INTRODUCED POPULATIONS OF AN INVADING PLANT, <i>LYTHRUM SALICARIA </i> (LYTHRACEAE). Evolution; International Journal of Organic Evolution, 1996, 50, 1512-1519.	1.1	58
15	Local adaptation primes coldâ€edge populations for range expansion but not warmingâ€induced range shifts. Ecology Letters, 2019, 22, 78-88.	3.0	56
16	LOSS OF SEX IN CLONAL POPULATIONS OF A FLOWERING PLANT, <i>DECODON VERTICILLATUS </i> (LYTHRACEAE). Evolution; International Journal of Organic Evolution, 1999, 53, 1079-1092.	1.1	50
17	Frequency-dependent selection on morph ratios in tristylous Lythrum salicaria (Lythraceae). Heredity, 1996, 77, 581-588.	1.2	49
18	Floral morphology mediates temporal variation in the mating system of a self ompatible plant. Ecology, 2009, 90, 1540-1548.	1.5	47

#	Article	IF	CITATIONS
19	Experimental analysis of protogyny in Aquilegia canadensis (Ranunculaceae). American Journal of Botany, 2000, 87, 1246-1256.	0.8	46
20	Cryptic self-incompatibility in tristylous Decodon verticillatus (Lythraceae). American Journal of Botany, 1997, 84, 1391-1397.	0.8	44
21	Populations do not become less genetically diverse or more differentiated towards the northern limit of the geographical range in clonal <i>Vaccinium stamineum</i> (Ericaceae). New Phytologist, 2008, 180, 534-544.	3.5	42
22	Ecological correlates of fitness across the northern geographic range limit of a Pacific Coast dune plant. Ecology, 2009, 90, 3051-3061.	1.5	42
23	Functional analysis of synchronous dichogamy in flowering rush, Butomus umbellatus (Butomaceae). American Journal of Botany, 2001, 88, 2204-2213.	0.8	41
24	Highâ€elevation range limit of an annual herb is neither caused nor reinforced by declining pollinator service. Journal of Ecology, 2015, 103, 572-584.	1.9	39
25	Interannual variation in season length is linked to strong coâ€gradient plasticity of phenology in a montane annual plant. New Phytologist, 2019, 224, 1184-1200.	3.5	32
26	Strong genetic differentiation but not local adaptation toward the range limit of a coastal dune plant. Evolution; International Journal of Organic Evolution, 2016, 70, 2520-2536.	1.1	19
27	Variation in pollen limitation and floral parasitism across a mating system transition in a Pacific coastal dune plant: evolutionary causes or ecological consequences?. Annals of Botany, 2015, 115, 315-326.	1.4	12
28	The effect of host abundance on the distribution and impact of biocontrol agents on purple loosestrife (<i>Lythrum salicaria</i> , Lythraceae). Ecoscience, 2013, 20, 90-99.	0.6	11
29	Experimental manipulation of flowers to determine the functional modes and fitness consequences of selfâ€fertilization: unexpected outcome reveals key assumptions. Functional Ecology, 2013, 27, 362-373.	1.7	10
30	Evolutionary consequences of extensive morph loss in tristylous <i>decodon verticillatus</i> (Lythraceae): a shift from tristyly to distyly?. American Journal of Botany, 1996, 83, 1024-1032.	0.8	6
31	Evolutionary consequences of extensive morph loss in tristylous decodon verticillatus (Lythraceae): a shift from tristyly to distyly?. , 1996, 83, 1024.		6
32	Microsatellite Primers forCamissoniopsis cheiranthifolia(Onagraceae) and Cross-Amplification in Related Species. Applications in Plant Sciences, 2014, 2, 1400057.	0.8	3
33	Integrated empirical approaches to better understand species' range limits. American Journal of Botany, 2020, 107, 12-16.	0.8	3
34	The contribution of hybridization to rangeâ€wide population genetic structure in a Pacific coastal dune plant. American Journal of Botany, 2019, 106, 1575-1588.	0.8	2
35	Chronic selection for early reproductive phenology in an annual plant across a steep, elevational gradient of growing season length. Evolution; International Journal of Organic Evolution, 2021, 75, 1681-1698.	1.1	2
36	Longâ€ŧerm persistence of experimental populations beyond a species' natural range. Ecology, 2021, 102, e03432.	1.5	1