Charlotte Avanzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2903784/publications.pdf

Version: 2024-02-01

477173 623574 34 973 14 29 citations g-index h-index papers 37 37 37 1163 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in <i>Mycobacterium abscessus</i> . Science Translational Medicine, 2022, 14, eabj3860.	5.8	15
2	Development and validation of a multiplex real-time qPCR assay using GMP-grade reagents for leprosy diagnosis. PLoS Neglected Tropical Diseases, 2022, 16, e0009850.	1.3	8
3	2-Aminoimidazoles Inhibit Mycobacterium abscessus Biofilms in a Zinc-Dependent Manner. International Journal of Molecular Sciences, 2022, 23, 2950.	1.8	4
4	<i>Mycobacterium leprae</i> Infection in a Wild Nine-Banded Armadillo, Nuevo León, Mexico. Emerging Infectious Diseases, 2022, 28, 747-749.	2.0	0
5	<i>Mycobacterium leprae</i> Infection in a Wild Nine-Banded Armadillo, Nuevo León, Mexico. Emerging Infectious Diseases, 2022, 28, 747-749.	2.0	4
6	Drug resistance in leprosy: An update following 70 years of chemotherapy. Infectious Diseases Now, 2022, 52, 243-251.	0.7	12
7	Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biology, 2021, 19, 220.	1.7	14
8	A new paradigm for leprosy diagnosis based on host gene expression. PLoS Pathogens, 2021, 17, e1009972.	2.1	11
9	Leprosy in wild chimpanzees. Nature, 2021, 598, 652-656.	13.7	30
10	Unique Features of Mycobacterium abscessus Biofilms Formed in Synthetic Cystic Fibrosis Medium. Frontiers in Microbiology, 2021, 12, 743126.	1.5	11
11	Molecular epidemiology of leprosy: An update. Infection, Genetics and Evolution, 2020, 86, 104581.	1.0	22
12	2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. BMC Biology, 2020, 18, 108.	1.7	29
13	Emergence of Mycobacterium leprae Rifampin Resistance Evaluated by Whole-Genome Sequencing after 48 Years of Irregular Treatment. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	7
14	Leprosy Transmission in Amazonian Countries: Current Status and Future Trends. Current Tropical Medicine Reports, 2020, 7, 79-91.	1.6	13
15	Population Genomics of Mycobacterium leprae Reveals a New Genotype in Madagascar and the Comoros. Frontiers in Microbiology, 2020, 11, 711.	1.5	15
16	Cell Surface Remodeling of <i>Mycobacterium abscessus</i> under Cystic Fibrosis Airway Growth Conditions. ACS Infectious Diseases, 2020, 6, 2143-2154.	1.8	11
17	Genomic Characterization of Mycobacterium leprae to Explore Transmission Patterns Identifies New Subtype in Bangladesh. Frontiers in Microbiology, 2020, 11, 1220.	1.5	20
18	The immunology of other mycobacteria: M. ulcerans, M. leprae. Seminars in Immunopathology, 2020, 42, 333-353.	2.8	21

#	Article	IF	CITATIONS
19	Leprosy in red squirrels in the UK. Veterinary Record, 2019, 184, 416-416.	0.2	6
20	British Red Squirrels Remain the Only Known Wild Rodent Host for Leprosy Bacilli. Frontiers in Veterinary Science, 2019, 6, 8.	0.9	22
21	CASOS DE RECIDIVA EM HANSENÃASE DIAGNOSTICADOS NA UNIDADE DE REFERÊNCIA EM DERMATOLOGIA DO ESTADO DO PARÃ, 2016-2018. Hansenologia Internationalis, 2019, 44, 70.	0.0	0
22	Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nature Communications, 2018, 9, 352.	5.8	95
23	Highly Reduced Genome of the New Species <i>Mycobacterium uberis</i> , the Causative Agent of Nodular Thelitis and Tuberculoid Scrotitis in Livestock and a Close Relative of the Leprosy Bacilli. MSphere, 2018, 3, .	1.3	14
24	Evaluation of Auramine O staining and conventional PCR for leprosy diagnosis: A comparative cross-sectional study from Ethiopia. PLoS Neglected Tropical Diseases, 2018, 12, e0006706.	1.3	12
25	Evidence of zoonotic leprosy in Par $ ilde{A}_i$, Brazilian Amazon, and risks associated with human contact or consumption of armadillos. PLoS Neglected Tropical Diseases, 2018, 12, e0006532.	1.3	65
26	Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathogens, 2018, 14, e1006997.	2.1	98
27	Insights from the Genome Sequence of <i>Mycobacterium lepraemurium</i> : Massive Gene Decay and Reductive Evolution. MBio, 2017, 8, .	1.8	16
28	Whole genome sequencing distinguishes between relapse and reinfection in recurrent leprosy cases. PLoS Neglected Tropical Diseases, 2017, 11, e0005598.	1.3	35
29	Transmission of Drug-Resistant Leprosy in Guinea-Conakry Detected Using Molecular Epidemiological Approaches: Table 1 Clinical Infectious Diseases, 2016, 63, 1482-1484.	2.9	25
30	Red squirrels in the British Isles are infected with leprosy bacilli. Science, 2016, 354, 744-747.	6.0	138
31	Insight into the evolution and origin of leprosy bacilli from the genome sequence of		