William Finnigan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2903489/publications.pdf

Version: 2024-02-01

17 papers	728 citations	12 h-index	996849 15 g-index
19	19	19	711 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Oneâ€Step Biocatalytic Synthesis of Sustainable Surfactants by Selective Amide Bond Formation**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
2	Oneâ€Step Biocatalytic Synthesis of Sustainable Surfactants by Selective Amide Bond Formation**. Angewandte Chemie, 2022, 134, .	1.6	1
3	RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nature Catalysis, 2021, 4, 98-104.	16.1	131
4	Enzyme immobilisation on wood-derived cellulose scaffolds <i>via</i> carbohydrate-binding module fusion constructs. Green Chemistry, 2021, 23, 4716-4732.	4.6	16
5	Biocatalysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	255
6	Enzyme Cascade Design: Retrosynthesis Approach. , 2021, , 7-30.		1
7	Direct enzymatic synthesis of fatty amines from renewable triglycerides and oils. ChemBioChem, 2021, ,	1.3	1
8	Non-covalent protein-based adhesives for transparent substrates—bovine serum albumin vs. recombinant spider silk. Materials Today Bio, 2020, 7, 100068.	2.6	24
9	Biocatalytic Monoacylation of Symmetrical Diamines and Its Application to the Synthesis of Pharmaceutically Relevant Amides. ACS Catalysis, 2020, 10, 10005-10009.	5.5	33
10	Rapid Model-Based Optimization of a Two-Enzyme System for Continuous Reductive Amination in Flow. Organic Process Research and Development, 2020, 24, 1969-1977.	1.3	16
11	The effect of terminal globular domains on the response of recombinant mini-spidroins to fiber spinning triggers. Scientific Reports, 2020, 10, 10671.	1.6	22
12	Engineering a Seven Enzyme Biotransformation using Mathematical Modelling and Characterized Enzyme Parts. ChemCatChem, 2019, 11, 3474-3489.	1.8	39
13	Synthetic biology for fibers, adhesives, and active camouflage materials in protection and aerospace. MRS Communications, 2019, 9, 486-504.	0.8	21
14	Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Communications Biology, 2019, 2, 429.	2.0	34
15	Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry. ChemCatChem, 2017, 9, 1005-1017.	1.8	106
16	Carboxylic acid reductases and their use as well defined enzyme building blocks for the construction of in vitro cascade reactions. New Biotechnology, 2016, 33, S15-S16.	2.4	0
17	Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site. Scientific Reports, 2016, 6, 25542.	1.6	8