Moshe Deutsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2903225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salt-induced stability and modified interfacial energetics in self-faceting emulsion droplets. Journal of Colloid and Interface Science, 2022, 621, 131-138.	9.4	6
2	Binary mixtures of homologous room-temperature ionic liquids: Nanoscale structure evolution with alkyl lengths' difference. Journal of Molecular Liquids, 2022, 355, 118874.	4.9	3
3	Binary mixtures of homologous room-temperature ionic liquids: Temperature and composition evolution of the nanoscale structure. Journal of Molecular Liquids, 2021, 338, 116587.	4.9	5
4	Comment on "Bi-layering at ionic liquid surfaces: a sum – frequency generation vibrational spectroscopy – and molecular dynamics simulation-based study―by T. Iwahashi, T. Ishiyama, Y. Sakai, A. Morita, D. Kim and Y. Ouchi, <i>Phys. Chem. Chem. Phys.</i> , 2020, 22 , 12565. Physical Chemistry Chemical Physics, 2021, 23, 5020-5027.	2.8	1
5	Temperature evolution of the bulk nano-structure in a homologous series of room temperature ionic liquids. Journal of Molecular Liquids, 2020, 300, 112280.	4.9	10
6	Nucleation and Growth of PbBrF Crystals at the Liquid Mercury–Electrolyte Interface Studied by Operando X-ray Scattering. Langmuir, 2020, 36, 10905-10915.	3.5	5
7	Nanoscale Structure in Shortâ€Chain Ionic Liquids. ChemPhysChem, 2020, 21, 1887-1897.	2.1	6
8	Polyhedral liquid droplets: Recent advances in elucidation and application. Current Opinion in Colloid and Interface Science, 2020, 49, 107-117.	7.4	11
9	Polyhedral Water Droplets: Shape Transitions and Mechanism. Journal of the American Chemical Society, 2020, 142, 8672-8678.	13.7	11
10	Nanoparticle Positioning on Liquid and Polymerized Faceted Droplets. Journal of Physical Chemistry C, 2019, 123, 28192-28200.	3.1	6
11	Precise Self-Positioning of Colloidal Particles on Liquid Emulsion Droplets. Langmuir, 2019, 35, 13053-13061.	3.5	10
12	Surface Phases and Surface Freezing in an Ionic Liquid. Journal of Physical Chemistry C, 2019, 123, 3058-3066.	3.1	15
13	Nanostructures, Faceting, and Splitting in Nanoliter to Yoctoliter Liquid Droplets. Nano Letters, 2019, 19, 3161-3168.	9.1	22
14	Self-faceting of emulsion droplets as a route to solid icosahedra and other polyhedra. Journal of Colloid and Interface Science, 2019, 538, 541-545.	9.4	24
15	Surface structure evolution in a homologous series of ionic liquids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1100-E1107.	7.1	42
16	Temperature-Tuned Faceting and Shape Changes in Liquid Alkane Droplets. Langmuir, 2017, 33, 1305-1314.	3.5	34
17	Self-segregated nanostructure in room temperature ionic liquids. Soft Matter, 2017, 13, 6947-6955.	2.7	26
18	Molecular scale structure and dynamics at an ionic liquid/electrode interface. Faraday Discussions, 2017, 206, 141-157.	3.2	57

Мозне Deutsch

#	Article	IF	CITATIONS
19	From faceted vesicles to liquid icoshedra: Where topology and crystallography meet. Current Opinion in Colloid and Interface Science, 2016, 22, 35-40.	7.4	31
20	Temperature- and potential-dependent structure of the mercury-electrolyte interface. Physical Review B, 2016, 93, .	3.2	10
21	Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution. Langmuir, 2016, 32, 3164-3173.	3.5	11
22	How faceted liquid droplets grow tails. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 493-496.	7.1	82
23	Order and Melting in Self-Assembled Alkanol Monolayers on Amorphous SiO ₂ . Journal of Physical Chemistry C, 2015, 119, 17648-17654.	3.1	16
24	Surfactant-Induced Phases in Water-Supported Alkane Monolayers: I. Thermodynamics. Langmuir, 2014, 30, 8000-8009.	3.5	4
25	Surfactant-Induced Phases in Water-Supported Alkane Monolayers: II. Structure. Langmuir, 2014, 30, 8010-8019.	3.5	11
26	The structure of Langmuir films of long diols on mercury. Soft Matter, 2013, 9, 11204.	2.7	1
27	Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3733-3737.	7.1	97
28	In situ X-ray studies of adlayer-induced crystal nucleation at the liquid–liquid interface. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6663-6668.	7.1	26
29	Highly anisotropic thermal expansion in molecular films of dicarboxylic fatty acids. Physical Review B, 2012, 85, .	3.2	4
30	Two-Dimensional Order in Mercury-Supported Langmuir Films of Fatty Diacids. Langmuir, 2012, 28, 15586-15597.	3.5	6
31	Nanoscale structure of surfactant-induced nanoparticle monolayers at the oil–water interface. Soft Matter, 2012, 8, 11478.	2.7	62
32	Hydrogen-Bonded Order in Mercury-Supported Monolayers of End-Functionalized Alkanes. Journal of Physical Chemistry C, 2011, 115, 25451-25463.	3.1	4
33	Modification of deeply buried hydrophobic interfaces by ionic surfactants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5522-5525.	7.1	58
34	Atomic-Scale Structure of a Liquid Metalâ^'Insulator Interface. Journal of Physical Chemistry Letters, 2010, 1, 1041-1045.	4.6	22
35	Surface structure of liquid Bi and Sn: An x-ray reflectivity study. Physical Review B, 2009, 79, .	3.2	31
36	Layering of [BMIM]+-based ionic liquids at a charged sapphire interface. Journal of Chemical Physics, 2009, 131, 094701.	3.0	127

Мозне Deutsch

#	Article	IF	CITATIONS
37	Molecular Layering of Fluorinated Ionic Liquids at a Charged Sapphire (0001) Surface. Science, 2008, 322, 424-428.	12.6	576
38	Crystalline surface phases of the liquid Au-Si eutectic alloy. Physical Review B, 2007, 76, .	3.2	37
39	Surface Crystallization in a Liquid AuSi Alloy. Science, 2006, 313, 77-80.	12.6	184
40	Atomic-Scale Surface Demixing in a Eutectic Liquid BiSn Alloy. Physical Review Letters, 2005, 95, 106103.	7.8	55
41	Structure of Mercaptobiphenyl Monolayers on Mercury. Journal of Physical Chemistry B, 2005, 109, 12534-12543.	2.6	19
42	Surface freezing of chain molecules at the liquid–liquid and liquid–air interfaces. Faraday Discussions, 2005, 129, 339-352.	3.2	65
43	Surface Layering in Ionic Liquids:Â An X-ray Reflectivity Study. Journal of the American Chemical Society, 2005, 127, 7796-7804.	13.7	277
44	Anomalous layering at the liquid Sn surface. Physical Review B, 2004, 70, .	3.2	73
45	Surface layering of liquids: The role of surface tension. Physical Review B, 2004, 69, .	3.2	69
46	X-ray study of the liquid potassium surface: Structure and capillary wave excitations. Physical Review B, 2003, 67, .	3.2	81
47	KαandKβx-ray emission spectra of metallic scandium. Physical Review A, 1999, 60, 2018-2033.	2.5	42
48	Electroaggregation of Silver Interfacial Colloids. Journal of Physical Chemistry B, 1997, 101, 9757-9766.	2.6	11
49	AC-Driven Interfacial Electrodeposition of Silver. Langmuir, 1997, 13, 4722-4728.	3.5	13
50	Interfacial Electrodeposition of Silver:Â The Role of Wetting. Langmuir, 1996, 12, 5180-5187.	3.5	22
51	Self-assembly of organic films on a liquid metal. Nature, 1996, 384, 250-252.	27.8	116
52	Two-Dimensional Crystallography of Amphiphilic Molecules at the Air–Water Interface. Angewandte Chemie International Edition in English, 1992, 31, 130-152.	4.4	174
53	Elucidation of the two-dimensional structure of an α-amino acid surfactant monolayer on water using synchrotron X-ray diffraction. Nature, 1987, 328, 63-66.	27.8	101
54	Macroscopic polarity of connective tissue is due to discrete polar structures. Biopolymers, 1986, 25, 601-606.	2.4	11