Gordon T Richards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2903199/publications.pdf

Version: 2024-02-01

9264 15732 42,713 127 74 125 citations h-index g-index papers 130 130 130 11857 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Sloan Digital Sky Survey: Technical Summary. Astronomical Journal, 2000, 120, 1579-1587.	4.7	8,099
2	THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2009, 182, 543-558.	7.7	4,201
3	Sloan Digital Sky Survey: Early Data Release. Astronomical Journal, 2002, 123, 485-548.	4.7	2,003
4	SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS. Astronomical Journal, 2011, 142, 72.	4.7	1,700
5	THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III. Astronomical Journal, 2013, 145, 10.	4.7	1,571
6	Composite Quasar Spectra from the Sloan Digital Sky Survey. Astronomical Journal, 2001, 122, 549-564.	4.7	1,494
7	The Sixth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2008, 175, 297-313.	7.7	1,202
8	THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2011, 193, 29.	7.7	1,166
9	THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. Astrophysical Journal, Supplement Series, 2012, 203, 21.	7.7	1,158
10	Constraining the Evolution of the Ionizing Background and the Epoch of Reionization withz ~ 6 Quasars. II. A Sample of 19 Quasars. Astronomical Journal, 2006, 132, 117-136.	4.7	1,116
11	A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7. Astrophysical Journal, Supplement Series, 2011, 194, 45.	7.7	1,104
12	The Fourth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2006, 162, 38-48.	7.7	948
13	Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars. Astrophysical Journal, Supplement Series, 2006, 166, 470-497.	7.7	908
14	An Observational Determination of the Bolometric Quasar Luminosity Function. Astrophysical Journal, 2007, 654, 731-753.	4.5	883
15	Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample. Astronomical Journal, 2002, 123, 2945-2975.	4.7	831
16	THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE. Astronomical Journal, 2010, 139, 2360-2373.	4.7	800
17	The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3. Astronomical Journal, 2006, 131, 2766-2787.	4.7	701
18	The Sloan Digital Sky Survey View of the Palomar-Green Bright Quasar Survey. Astronomical Journal, 2005, 130, 873-895.	4.7	528

#	Article	IF	Citations
19	Biases in Virial Black Hole Masses: An SDSS Perspective. Astrophysical Journal, 2008, 680, 169-190.	4.5	441
20	Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey. Astronomical Journal, 2002, 124, 2364-2400.	4.7	416
21	The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release. Astronomical Journal, 2007, 134, 102-117.	4.7	394
22	The Ensemble Photometric Variability of $\hat{a}^{1}/425,000$ Quasars in the Sloan Digital Sky Survey. Astrophysical Journal, 2004, 601, 692-714.	4.5	351
23	A Survey ofz > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars. Astronomical Journal, 2006, 131, 1203-1209.	4.7	350
24	A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Third Data Release. Astrophysical Journal, Supplement Series, 2006, 165, 1-18.	7.7	332
25	Red and Reddened Quasars in the Sloan Digital Sky Survey. Astronomical Journal, 2003, 126, 1131-1147.	4.7	321
26	UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C IV EMISSION. Astronomical Journal, 2011, 141, 167.	4.7	321
27	Clustering of High-Redshift (z≥ 2.9) Quasars from the Sloan Digital Sky Survey. Astronomical Journal, 2007, 133, 2222-2241.	4.7	315
28	Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars?. Astronomical Journal, 2002, 124, 1-17.	4.7	305
29	Candidate Type II Quasars from the Sloan Digital Sky Survey. I. Selection and Optical Properties of a Sample at 0.3 <z<0.83. 126,="" 2003,="" 2125-2144.<="" astronomical="" journal,="" td=""><td>4.7</td><td>296</td></z<0.83.>	4.7	296
30	Unusual Broad Absorption Line Quasars from the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2002, 141, 267-309.	7.7	290
31	EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. â^1/41, 000, 000 QUASARS FROM DATA RELEASE 6. Astrophysical Journal, Supplement Series, 2009, 180, 67-83.	7.7	264
32	SPACE DENSITY OF OPTICALLY SELECTED TYPE 2 QUASARS. Astronomical Journal, 2008, 136, 2373-2390.	4.7	247
33	THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE. Astrophysical Journal, Supplement Series, 2012, 199, 3.	7.7	246
34	The Sloan Digital Sky Survey Quasar Catalog. III. Third Data Release. Astronomical Journal, 2005, 130, 367-380.	4.7	245
35	Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications. Physical Review D, 2008, 77, .	4.7	237
36	Continuum and Emission-Line Properties of Broad Absorption Line Quasars. Astronomical Journal, 2003, 126, 2594-2607.	4.7	230

#	Article	IF	CITATIONS
37	A DESCRIPTION OF QUASAR VARIABILITY MEASURED USING REPEATED SDSS AND POSS IMAGING. Astrophysical Journal, 2012, 753, 106.	4.5	218
38	Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early Sloan Digital Sky Survey Data. Astrophysical Journal, 2002, 579, 48-75.	4.5	209
39	CLUSTERING OF LOW-REDSHIFT (<i>z</i>) ⩽ 2.2) QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, 2009, 697, 1634-1655.	4.5	209
40	Dust Reddening in Sloan Digital Sky Survey Quasars. Astronomical Journal, 2004, 128, 1112-1123.	4.7	208
41	Detection of Cosmic Magnification with the Sloan Digital Sky Survey. Astrophysical Journal, 2005, 633, 589-602.	4.5	204
42	The Radio‣oud Fraction of Quasars is a Strong Function of Redshift and Optical Luminosity. Astrophysical Journal, 2007, 656, 680-690.	4. 5	196
43	QUASAR CLUSTERING FROM SDSS DR5: DEPENDENCES ON PHYSICAL PROPERTIES. Astrophysical Journal, 2009, 697, 1656-1673.	4.5	191
44	Colors of 2625 Quasars at 0 < [ITAL][CLC]z[/CLC][/ITAL] < 5 Measured in the Sloan Digital Sky Photometric System. Astronomical Journal, 2001, 121, 2308-2330.	Survey 4.7	190
45	A strong redshift dependence of the broad absorption line quasar fraction. Monthly Notices of the Royal Astronomical Society, 2011, 410, 860-884.	4.4	181
46	THE <i>>z</i> = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82. Astrophysical Journal, 2013, 768, 105.	4. 5	181
47	Average extinction curves and relative abundances for quasi-stellar object absorption-line systems at 1 â‰zabs < 2. Monthly Notices of the Royal Astronomical Society, 2006, 367, 945-978.	4.4	179
48	Efficient Photometric Selection of Quasars from the Sloan Digital Sky Survey: $100,000\ z < 3$ Quasars from Data Release One. Astrophysical Journal, Supplement Series, 2004, 155, 257-269.	7.7	175
49	THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: THE QUASAR LUMINOSITY FUNCTION FROM DATA RELEASE NINE. Astrophysical Journal, 2013, 773, 14.	4.5	170
50	A SURVEY OF <i>z</i> â^1/4 6 QUASARS IN THE SLOAN DIGITAL SKY SURVEY DEEP STRIPE. I. A FLUX-LIMITED SAMPL AT <i>z_{AB}</i> < 21. Astronomical Journal, 2008, 135, 1057-1066.	-E 4.7	156
51	Clustering Analyses of 300,000 Photometrically Classified Quasars. I. Luminosity and Redshift Evolution in Quasar Bias. Astrophysical Journal, 2007, 658, 85-98.	4.5	152
52	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW. Astrophysical Journal, Supplement Series, 2015, 216, 4.	7.7	151
53	The bolometric quasar luminosity function at <i>z</i> Â= 0–7. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3252-3275.	4.4	150
54	First Measurement of the Clustering Evolution of Photometrically Classified Quasars. Astrophysical Journal, 2006, 638, 622-634.	4.5	148

#	Article	IF	CITATIONS
55	The Sloan Digital Sky Survey Quasar Lens Search. I. Candidate Selection Algorithm. Astronomical Journal, 2006, 132, 999-1013.	4.7	138
56	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: VELOCITY SHIFTS OF QUASAR EMISSION LINES. Astrophysical Journal, 2016, 831, 7.	4.5	134
57	Correcting CÂiv-based virial black hole masses. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2120-2142.	4.4	131
58	HIGH-REDSHIFT SDSS QUASARS WITH WEAK EMISSION LINES. Astrophysical Journal, 2009, 699, 782-799.	4.5	121
59	A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Early Data Release. Astronomical Journal, 2003, 125, 1711-1728.	4.7	120
60	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: FIRST BROAD-LINE HÎ ² AND Mg ii LAGS AT zÂ≳Â0.3 FROM SIX-MONTH SPECTROSCOPY. Astrophysical Journal, 2016, 818, 30.	4.5	116
61	MEAN SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC CORRECTIONS FOR LUMINOUS QUASARS. Astrophysical Journal, Supplement Series, 2013, 206, 4.	7.7	111
62	The 2dF-SDSS LRG and QSO Survey: the spectroscopic QSO catalogue. Monthly Notices of the Royal Astronomical Society, 2009, 392, 19-44.	4.4	109
63	Are the variability properties of the <i>Kepler </i> AGN light curves consistent with a damped random walk?. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4328-4345.	4.4	106
64	BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT <i>z</i> å^¼ 3-4. Astrophysical Journal, 2010, 719, 1672-1692.	4.5	105
65	The Sloan Digital Sky Survey Reverberation Mapping Project: Sample Characterization. Astrophysical Journal, Supplement Series, 2019, 241, 34.	7.7	102
66	ChandraObservations of the Highest Redshift Quasars from the Sloan Digital Sky Survey. Astrophysical Journal, 2006, 644, 86-99.	4.5	99
67	High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. VI. Sloan Digital Sky Survey Spectrograph Observations. Astronomical Journal, 2001, 122, 503-517.	4.7	90
68	C iv emission-line properties and systematic trends in quasar black hole mass estimates. Monthly Notices of the Royal Astronomical Society, 2016, 461, 647-665.	4.4	87
69	Photometric Redshifts of Quasars. Astronomical Journal, 2001, 122, 1151-1162.	4.7	85
70	A POPULATION OF X-RAY WEAK QUASARS: PHL 1811 ANALOGS AT HIGH REDSHIFT. Astrophysical Journal, 2011, 736, 28.	4.5	80
71	Optically Identified BL Lacertae Objects from the Sloan Digital Sky Survey. Astronomical Journal, 2005, 129, 2542-2561.	4.7	79
72	Extremely red quasars in BOSS. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3431-3463.	4.4	79

#	Article	IF	CITATIONS
73	An Empirical Calibration of the Completeness of the SDSS Quasar Survey. Astronomical Journal, 2005, 129, 2047-2061.	4.7	77
74	A Large, Uniform Sample of X-Ray-emitting Active Galactic Nuclei from theROSATAll Sky and Sloan Digital Sky Surveys: The Data Release 5 Sample. Astronomical Journal, 2007, 133, 313-329.	4.7	75
75	An Empirical Algorithm for Broadband Photometric Redshifts of Quasars from the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2004, 155, 243-256.	7.7	72
76	BAYESIAN HIGH-REDSHIFT QUASAR CLASSIFICATION FROM OPTICAL AND MID-IR PHOTOMETRY. Astrophysical Journal, Supplement Series, 2015, 219, 39.	7.7	57
77	QUASAR CLASSIFICATION USING COLOR AND VARIABILITY. Astrophysical Journal, 2015, 811, 95.	4.5	57
78	EIGHT-DIMENSIONAL MID-INFRARED/OPTICAL BAYESIAN QUASAR SELECTION. Astronomical Journal, 2009, 137, 3884-3899.	4.7	56
79	MINING FOR DUST IN TYPE 1 QUASARS. Astronomical Journal, 2015, 149, 203.	4.7	54
80	BAL and non-BAL quasars: continuum, emission, and absorption properties establish a common parent sample. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4553-4575.	4.4	51
81	AGN Populations in Large-volume X-Ray Surveys: Photometric Redshifts and Population Types Found in the Stripe 82X Survey. Astrophysical Journal, 2017, 850, 66.	4.5	50
82	Winds as the origin of radio emission in $z\hat{A}=\hat{A}2.5$ radio-quiet extremely red quasars. Monthly Notices of the Royal Astronomical Society, 2018, 477, 830-844.	4.4	49
83	WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?. Astrophysical Journal Letters, 2010, 722, L152-L156.	8.3	48
84	X-RAY INSIGHTS INTO THE NATURE OF WEAK EMISSION-LINE QUASARS AT HIGH REDSHIFT. Astrophysical Journal, 2009, 696, 580-590.	4.5	47
85	MEAN AND EXTREME RADIO PROPERTIES OF QUASARS AND THE ORIGIN OF RADIO EMISSION. Astronomical Journal, 2015, 149, 61.	4.7	46
86	DETECTION OF REST-FRAME OPTICAL LINES FROM X-SHOOTER SPECTROSCOPY OF WEAK EMISSION-LINE QUASARS. Astrophysical Journal, 2015, 805, 123.	4.5	46
87	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: ENSEMBLE SPECTROSCOPIC VARIABILITY OF QUASAR BROAD EMISSION LINES. Astrophysical Journal, 2015, 811, 42.	4.5	45
88	High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. V. Hobby-Eberly Telescope Observations. Astronomical Journal, 2001, 121, 1232-1240.	4.7	44
89	SpIES: THE SPITZER IRAC EQUATORIAL SURVEY. Astrophysical Journal, Supplement Series, 2016, 225, 1.	7.7	43
90	Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design. Astrophysical Journal, Supplement Series, 2022, 258, 1.	7.7	40

#	Article	IF	CITATIONS
91	Intrinsic Absorption in Radioâ€selected Quasars. Astrophysical Journal, Supplement Series, 2001, 133, 53-75.	7.7	37
92	Extracting information from AGN variability. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3027-3048.	4.4	36
93	Stochastic Modeling Handbook for Optical AGN Variability. Publications of the Astronomical Society of the Pacific, 2019, 131, 063001.	3.1	34
94	C IV EMISSION AND THE ULTRAVIOLET THROUGH X-RAY SPECTRAL ENERGY DISTRIBUTION OF RADIO-QUIET QUASARS. Astronomical Journal, 2011, 142, 130.	4.7	33
95	The Sloan Digital Sky Survey Reverberation Mapping Project: The C iv Blueshift, Its Variability, and Its Dependence Upon Quasar Properties. Astrophysical Journal, 2018, 854, 128.	4.5	33
96	X-Ray Insights into Interpreting CivBlueshifts and Optical/Ultraviolet Continua. Astronomical Journal, 2005, 129, 567-577.	4.7	32
97	The Clustering of High-redshift (2.9Ââ‰ÂzÂâ‰Â5.1) Quasars in SDSS Stripe 82. Astrophysical Journal, 2018, 859 20.	, '4.5	32
98	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: AN INVESTIGATION OF BIASES IN C iv EMISSION LINE PROPERTIES. Astrophysical Journal, Supplement Series, 2016, 224, 14.	7.7	30
99	Connecting the X-ray properties of weak-line and typical quasars: testing for a geometrically thick accretion disk. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	30
100	Kinematics of C iv and [O iii] emission in luminous high-redshift quasars. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5335-5348.	4.4	26
101	ASTROMETRIC REDSHIFTS FOR QUASARS. Astronomical Journal, 2009, 138, 19-27.	4.7	24
102	The $z\hat{A}=\hat{A}0.54$ LoBAL Quasar SDSS J085053.12+445122.5. I. Spectral Synthesis Analysis Reveals a Massive Outflow (sup) $\hat{a}-(sup)$. Astrophysical Journal, 2018, 866, 7.	4.5	23
103	Steep Hard-X-Ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-line Quasars*. Astrophysical Journal, 2018, 865, 92.	4.5	19
104	Quasar Absorption Lines as a Function of Quasar Orientation Measures. Astrophysical Journal, 2001, 547, 635-648.	4.5	18
105	THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS. Astrophysical Journal, 2011, 743, 163.	4.5	18
106	Do the <i>Kepler </i> AGN light curves need reprocessing?. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2075-2081.	4.4	15
107	Exploring the link between C <scp>iv</scp> outflow kinematics and sublimation-temperature dust in quasars. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3061-3073.	4.4	15
108	Discovery of a Remarkably Powerful Broad Absorption-line Quasar Outflow in SDSS J135246.37+423923.5. Astrophysical Journal, 2020, 891, 53.	4.5	14

#	Article	IF	Citations
109	Characterizing Quasar C iv Emission-line Measurements from Time-resolved Spectroscopy. Astrophysical Journal, 2020, 899, 96.	4.5	14
110	FIRST 0747+2739: A FIRST/2MASS Quasar with an Overabundance of C iv Absorption Systems. Astrophysical Journal, 2002, 567, L13-L17.	4.5	13
111	The zÂ=Â0.54 LoBAL Quasar SDSS J085053.12+445122.5. II. The Nature of Partial Covering in the Broad-absorption-line Outflow. Astrophysical Journal, 2019, 879, 27.	4.5	12
112	Narrow, intrinsic C iv absorption in quasars as it relates to outflows, orientation, and radio properties. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5916-5934.	4.4	9
113	Placing High-redshift Quasars in Perspective: A Catalog of Spectroscopic Properties from the Gemini Near Infrared Spectrograph–Distant Quasar Survey. Astrophysical Journal, Supplement Series, 2021, 252, 15.	7.7	9
114	Placing LOFAR-detected quasars in C <scp>iv</scp> emission space: implications for winds, jets and star formation. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4154-4169.	4.4	7
115	Probing the Wind Component of Radio Emission in Luminous High-redshift Quasars. Astronomical Journal, 2021, 162, 270.	4.7	7
116	Blazar Variability with the Vera C. Rubin Legacy Survey of Space and Time. Astrophysical Journal, Supplement Series, 2022, 258, 3.	7.7	7
117	Exploring Changes in Quasar Spectral Energy Distributions across C iv Parameter Space. Astrophysical Journal, 2022, 931, 154.	4.5	7
118	Connecting Low- and High-redshift Weak Emission-line Quasars via Hubble Space Telescope Spectroscopy of Lyı̂± Emission. Astrophysical Journal, 2022, 929, 78.	4.5	5
119	A Novel Test of Quasar Orientation. Astrophysical Journal Letters, 2021, 914, L14.	8.3	3
120	Properties of a Previously Unidentified Instrumental Signature in Kepler/K2 That was Confused for AGN Variability. Astronomical Journal, 2021, 162, 232.	4.7	3
121	Analysis of Long-term Systematic Errors in Kepler K2. Research Notes of the AAS, 2018, 2, 127.	0.7	2
122	Physical Models for the Clustering of Obscured and Unobscured Quasars. Astrophysical Journal, 2020, 888, 71.	4.5	2
123	Can X-Ray Observations Improve Optical-UV-based Accretion-rate Estimates for Quasars?. Astrophysical Journal, 2022, 931, 41.	4.5	2
124	Bayesian Quasar Selection and the Quasar Luminosity Function. , 2008, , .		1
125	Optical selection of quasars: SDSS and LSST. Proceedings of the International Astronomical Union, 2013, 9, 11-17.	0.0	1
126	Differential Chromatic Refraction in the Context of the Legacy Survey of Space and Time. Research Notes of the AAS, 2020, 4, 252.	0.7	1

 #	Article	IF	CITATIONS
127	High Signal-to-Noise Ratio Mid-Infrared Quasar Spectral Templates. Proceedings of the International Astronomical Union, 2013, 9, 315-318.	0.0	0