List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2903106/publications.pdf Version: 2024-02-01

Τωνν Ηλοιβλαλτλ

#	Article	IF	CITATIONS
1	A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. Journal of the Chinese Chemical Society, 2017, 64, 732-756.	1.4	274
2	Pesticides in Drinking Water—A Review. International Journal of Environmental Research and Public Health, 2021, 18, 468.	2.6	271
3	Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: a Review. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	200
4	Laccase immobilization on cellulose nanofiber: The catalytic efficiency and recyclic application for simulated dye effluent treatment. Journal of Molecular Catalysis B: Enzymatic, 2014, 100, 111-120.	1.8	140
5	Silver Nanoparticles in the Water Environment in Malaysia: Inspection, characterization, removal, modeling, and future perspective. Scientific Reports, 2018, 8, 986.	3.3	122
6	Response Surface Methodology for Modeling Bisphenol A Removal Using Ultrafiltration Membrane System. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	98
7	Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. Journal of Hazardous Materials, 2009, 164, 911-917.	12.4	91
8	Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022. Bioresource Technology, 2012, 107, 314-318.	9.6	80
9	Decolorization of Azo, Triphenylmethane and Anthraquinone Dyes by Laccase of a Newly Isolated Armillaria sp. F022. Water, Air, and Soil Pollution, 2012, 223, 1045-1054.	2.4	74
10	Microbial Decolorization of an Azo Dye Reactive Black 5 Using White-Rot Fungus Pleurotus eryngii F032. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	72
11	Removal of Remazol Brilliant Blue R from Aqueous Solution by Adsorption Using Pineapple Leaf Powder and Lime Peel Powder. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	68
12	Decolorization and Metabolism of Anthraquionone-Type Dye by Laccase of White-Rot Fungi Polyporus sp. S133. Water, Air, and Soil Pollution, 2012, 223, 933-941.	2.4	64
13	Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology. Environmental Pollution, 2022, 302, 119061.	7.5	62
14	Modified phyto-waste Terminalia catappa fruit shells: a reusable adsorbent for the removal of micropollutant diclofenac. RSC Advances, 2015, 5, 30950-30962.	3.6	61
15	Removal of Bisphenol A from Aqueous Solution by Activated Carbon Derived from Oil Palm Empty Fruit Bunch. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	60
16	Adsorption Characteristics of Bisphenol A onto Low-Cost Modified Phyto-Waste Material in Aqueous Solution. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	58
17	Metabolites characterisation of laccase mediated Reactive Black 5 biodegradation by fast growing ascomycete fungus Trichoderma atroviride F03. International Biodeterioration and Biodegradation, 2015, 104, 274-282.	3.9	57
18	Characterization of microplastics in the water and sediment of Baram River estuary, Borneo Island. Marine Pollution Bulletin, 2021, 172, 112880.	5.0	55

#	Article	IF	CITATIONS
19	Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: an effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells. Bioprocess and Biosystems Engineering, 2016, 39, 651-659.	3.4	54
20	Bioremediation of Crude Oil by White Rot Fungi Polyporus sp. S133. Journal of Microbiology and Biotechnology, 2011, 21, 995-1000.	2.1	53
21	The current scenario and challenges of biodiesel production in Asian countries: A review. Bioresource Technology Reports, 2020, 12, 100608.	2.7	52
22	Characterization of phenanthrene degradation by strain Polyporus sp. S133. Journal of Environmental Sciences, 2010, 22, 142-149.	6.1	46
23	Bio-fouling reducers for improving the performance of an aerobic submerged membrane bioreactor treating palm oil mill effluent. Desalination, 2013, 316, 146-153.	8.2	46
24	Phytoremediation Mechanisms in Air Pollution Control: a Review. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	46
25	Rapid bioremediation of Alizarin Red S and Quinizarine Green SS dyes using Trichoderma lixii F21 mediated by biosorption and enzymatic processes. Bioprocess and Biosystems Engineering, 2017, 40, 85-97.	3.4	45
26	Breakdown Products in the Metabolic Pathway of Anthracene Degradation by a Ligninolytic Fungus Polyporus sp. S133. Water, Air, and Soil Pollution, 2012, 223, 2201-2208.	2.4	43
27	Identification of naphthalene metabolism by white rot fungus Pleurotus eryngii. Bioprocess and Biosystems Engineering, 2013, 36, 1455-1461.	3.4	43
28	Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene. Fungal Biology, 2014, 118, 222-227.	2.5	43
29	Identification of Metabolites from Phenanthrene Oxidation by Phenoloxidases and Dioxygenases of Polyporus sp. S133. Journal of Microbiology and Biotechnology, 2011, 21, 299-304.	2.1	41
30	Identification of metabolites from benzo[a]pyrene oxidation by ligninolytic enzymes of Polyporus sp. S133. Journal of Environmental Management, 2012, 111, 115-119.	7.8	40
31	Identification of naphthalene metabolism by white rot fungus Armillaria sp. F022. Journal of Environmental Sciences, 2012, 24, 728-732.	6.1	39
32	Biodegradation of Phenanthrene by Fungi Screened from Nature. Pakistan Journal of Biological Sciences, 2007, 10, 2535-2543.	0.5	39
33	Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022. Bioprocess and Biosystems Engineering, 2013, 36, 461-468.	3.4	38
34	Biodegradation of Bis-Azo Dye Reactive Black 5 by White-Rot Fungus Trametes gibbosa sp. WRF 3 and Its Metabolite Characterization. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	38
35	Biotransformation and Detoxification of Antraquione Dye Green 3 using halophilic Hortaea sp International Biodeterioration and Biodegradation, 2019, 140, 72-77.	3.9	36
36	A purely green synthesis of silver nanoparticles using Carica papaya, Manihot esculenta, and Morinda citrifolia: synthesis and antibacterial evaluations. Bioprocess and Biosystems Engineering, 2017, 40, 1349-1361.	3.4	35

#	Article	IF	CITATIONS
37	Biodegradation of Mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal. Bioprocess and Biosystems Engineering, 2018, 41, 621-632.	3.4	35
38	Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza. Environmental Science and Pollution Research, 2012, 19, 1852-1858.	5.3	34
39	Abundance and distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Mahakam River. Marine Pollution Bulletin, 2019, 149, 110650.	5.0	34
40	Characterization of pyrene and chrysene degradation by halophilic Hortaea sp. B15. Bioprocess and Biosystems Engineering, 2019, 42, 963-969.	3.4	34
41	Biodegradation of pyrene by Candida sp. S1 under high salinity conditions. Bioprocess and Biosystems Engineering, 2017, 40, 1411-1418.	3.4	33
42	Adsorption of Procion Red MXâ€5B and Crystal Violet Dyes from Aqueous Solution onto Corncob Activated Carbon. Journal of the Chinese Chemical Society, 2018, 65, 259-270.	1.4	33
43	EFFECT OF ENVIRONMENTAL FACTORS IN THE DECOLORIZATION OF REMAZOL BRILLIANT BLUE R BY POLYPORUS SP. S133. Journal of the Chilean Chemical Society, 2012, 57, 1095-1098.	1.2	31
44	Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022. Folia Microbiologica, 2013, 58, 385-391.	2.3	31
45	Mechanism, adsorption kinetics and applications of carbonaceous adsorbents derived from black liquor sludge. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 236-243.	5.3	30
46	Triclosan removal by adsorption using activated carbon derived from waste biomass: Isotherms and kinetic studies. Journal of the Chinese Chemical Society, 2018, 65, 951-959.	1.4	30
47	Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium. Bioprocess and Biosystems Engineering, 2019, 42, 1483-1494.	3.4	30
48	Microplastic contamination in the Skipjack Tuna (Euthynnus affinis) collected from Southern Coast of Java, Indonesia. Chemosphere, 2021, 276, 130185.	8.2	30
49	Microplastic Occurrence in the Water and Sediment of Miri River Estuary, Borneo Island. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	30
50	Bioremediation of micropollutants using living and non-living algae - Current perspectives and challenges. Environmental Pollution, 2022, 292, 118474.	7.5	30
51	Biofiltration process as an ideal approach to remove pollutants from polluted air. Desalination and Water Treatment, 2014, 52, 3600-3615.	1.0	27
52	Novel Weed-Extracted Silver Nanoparticles and Their Antibacterial Appraisal against a Rare Bacterium from River and Sewage Treatment Plan. Nanomaterials, 2018, 8, 9.	4.1	27
53	Modified oil palm industry solid waste as a potential adsorbent for lead removal. Environmental Chemistry and Ecotoxicology, 2021, 3, 1-7.	9.1	27
54	Occurrence of endocrine-disrupting chemicals (EDCs) in river water and sediment of the Mahakam River. Journal of Water and Health, 2020, 18, 38-47.	2.6	26

#	Article	IF	CITATIONS
55	Correlation Study between Land Use, Water Quality, and Heavy Metals (Cd, Pb, and Zn) Content in Water and Green Lipped Mussels Perna viridis (Linnaeus.) at the Johor Strait. Water, Air, and Soil Pollution, 2012, 223, 3125-3136.	2.4	25
56	A Review on Lead Sources, Occurrences, Health Effects, and Treatment Using Hydroxyapatite (HAp) Adsorbent Made from Fish Waste. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	25
57	Acceleration of Anthraquinone-Type Dye Removal by White-Rot Fungus Under Optimized Environmental Conditions. Water, Air, and Soil Pollution, 2012, 223, 4669-4677.	2.4	24
58	A Modified Methylation Method to Determine Fatty Acid Content by Gas Chromatography. Bulletin of the Korean Chemical Society, 2013, 34, 3239-3242.	1.9	24
59	Optimization of pyrene degradation by white-rot fungus Pleurotus pulmonarius F043 and characterization of its metabolites. Bioprocess and Biosystems Engineering, 2014, 37, 1679-1684.	3.4	23
60	Laccase mediated diclofenac transformation and cytotoxicity assessment on mouse fibroblast 3T3-L1 preadipocytes. RSC Advances, 2014, 4, 11689.	3.6	23
61	A new electro-generated o-dianisidine derivative stabilized MWCNT-modified GCE for low potential gallic acid detection. RSC Advances, 2015, 5, 45996-46006.	3.6	23
62	Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06. Bioprocess and Biosystems Engineering, 2015, 38, 2167-2175.	3.4	22
63	Characterization of Titanium Dioxide Doped with Nitrogen and Sulfur and its Photocatalytic Appraisal for Degradation of Phenol and Methylene Blue. Journal of the Chinese Chemical Society, 2017, 64, 1333-1339.	1.4	22
64	Removal of Azo and Anthraquinone Dye by Plant Biomass as Adsorbent – A Review. Biointerface Research in Applied Chemistry, 2020, 11, 8218-8232.	1.0	22
65	Pancreatic Effect of Andrographolide Isolated from Andrographis paniculata (Burm. F.) Nees. Pakistan Journal of Biological Sciences, 2013, 17, 22-31.	0.5	22
66	Calculation of optimal gas retention time using a logarithmic equation applied to a bio-trickling filter reactor for formaldehyde removal from synthetic contaminated air. RSC Advances, 2013, 3, 5100.	3.6	21
67	Biodegradation Pathway of Acid Red 27 by Whiteâ€Rot Fungus <i>Armillaria</i> sp. F022 and Phytotoxicity Evaluation. Clean - Soil, Air, Water, 2016, 44, 239-246.	1.1	21
68	Removal of Silver Nanoparticles from Water Environment: Experimental, Mathematical Formulation, and Cost Analysis. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	21
69	Biodegradation of n-Eicosane by Fungi Screened from Nature. Pakistan Journal of Biological Sciences, 2007, 10, 1804-1810.	0.5	21
70	Fluorene biodegradation and identification of transformation products by white-rot fungus Armillaria sp. F022. Biodegradation, 2014, 25, 373-382.	3.0	20
71	Occurrence and distribution of estrogenic chemicals in river waters of Malaysia. Toxicology and Environmental Health Sciences, 2020, 12, 65-74.	2.1	20
72	Biodegradation Mechanism of Phenanthrene by Halophilic Hortaea sp. B15. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	19

#	Article	IF	CITATIONS
73	Phytoremediation of Copper-Contaminated Water with Pistia stratiotes in Surface and Distilled Water. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	19
74	Removal of bisphenol A by adsorption mechanism using PES–SiO2composite membranes. Environmental Technology (United Kingdom), 2016, 37, 1959-1969.	2.2	18
75	Challenges and Solutions for Sustainable Groundwater Usage: Pollution Control and Integrated Management. Current Pollution Reports, 2020, 6, 310-327.	6.6	18
76	Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon. Bioprocess and Biosystems Engineering, 2020, 43, 2305-2314.	3.4	18
77	Development of bioreactor systems for decolorization of Reactive Green 19 using white rot fungus. Desalination and Water Treatment, 2016, 57, 7029-7039.	1.0	17
78	Biodegradation of polycyclic aromatic hydrocarbons by high-laccase basidiomycetes fungi isolated from tropical forest of Borneo. Biocatalysis and Agricultural Biotechnology, 2020, 28, 101717.	3.1	17
79	Production of lipopeptide biosurfactant by Kurthia gibsonii KH2 and their synergistic action in biodecolourisation of textile wastewater. Environmental Technology and Innovation, 2021, 22, 101533.	6.1	17
80	Bioaugmentation involving a bacterial consortium isolated from the rhizosphere of Spirodela polyrhiza for treating water contaminated with a mixture of four nitrophenol isomers. RSC Advances, 2014, 4, 1616-1621.	3.6	16
81	Potential of the White-Rot Fungus Pleurotus pulmonarius F043 for Degradation and Transformation of Fluoranthene. Pedosphere, 2016, 26, 49-54.	4.0	16
82	Abundance and Distribution of Microplastics in the Water and Riverbank Sediment in Malaysia – A Review. Biointerface Research in Applied Chemistry, 2021, 11, 11700-11712.	1.0	16
83	Immunomodulatory Effects of Hexane Insoluble Fraction of Ficus septica Burm. F. in Doxorubicin-treated Rats. Asian Pacific Journal of Cancer Prevention, 2012, 13, 5785-5790.	1.2	16
84	The abundance of endocrine-disrupting chemicals (EDCs) in downstream of the Bengawan Solo and Brantas rivers located in Indonesia. Chemosphere, 2022, 297, 134151.	8.2	16
85	Rhizofiltration for Removal of Inorganic and Organic Pollutants in Groundwater: a Review. Biointerface Research in Applied Chemistry, 2021, 11, 12326-12347.	1.0	15
86	Biotransformation and Degradation Pathway of Pyrene by Filamentous Soil Fungus Trichoderma sp. F03. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	14
87	Characterization of pyrene biodegradation by whiteâ€rot fungus <i>Polyporus</i> sp. S133. Biotechnology and Applied Biochemistry, 2012, 59, 465-470.	3.1	13
88	Biotransformation studies of cresol red by Absidia spinosa M15. Journal of Environmental Management, 2016, 172, 107-111.	7.8	13
89	Treatability of Methylene Blue Solution by Adsorption Process Using Neobalanocarpus hepmii and Capsicum annuum. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	13
90	Biotransformation of pyrene in soil in the presence of earthworm Eisenia fetida. Environmental Technology and Innovation, 2020, 18, 100701.	6.1	13

#	Article	IF	CITATIONS
91	The Removal of Bisphenol A in Water Treatment Plant Using Ultrafiltration Membrane System. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	12
92	Opportunities and Challenges for Sustainable Bioremediation of Natural and Synthetic Estrogens as Emerging Water Contaminants Using Bacteria, Fungi, and Algae. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	12
93	A Combination of Waste Biomass Activated Carbon and Nylon Nanofiber for Removal of Triclosan from Aqueous Solutions. Journal of Environmental Treatment Techniques (discontinued), 2020, 8, 1036-1045.	0.3	12
94	Effect of surfactants and identification of metabolites on the biodegradation of fluoranthene by basidiomycetes fungal isolate Armillaria sp. F022. Bioprocess and Biosystems Engineering, 2014, 37, 593-600.	3.4	11
95	Decolorization and degradation mechanism of Amaranth by Polyporus sp. S133. Bioprocess and Biosystems Engineering, 2014, 37, 1879-1885.	3.4	11
96	Sustainable Removal of Nitrophenols by Rhizoremediation Using Four Strains of Bacteria and Giant Duckweed (Spirodela polyrhiza). Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	11
97	Biodegradation and Identification of Transformation Products of Fluorene by Ascomycete Fungi. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	11
98	A new green method for the synthesis of silver nanoparticles and their antibacterial activities against gramâ€positive and gramâ€negative bacteria. Journal of the Chinese Chemical Society, 2019, 66, 705-712.	1.4	11
99	Role of nanocatalyst in the treatment of organochlorine compounds - A review. Chemosphere, 2021, 268, 128873.	8.2	11
100	Adsorption of azo and anthraquinone dye by using watermelon peel powder and corn peel powder: equilibrium and kinetic studies. Biointerface Research in Applied Chemistry, 2020, 10, 4706-4713.	1.0	11
101	A green deposition method of silver nanoparticles on textiles and their antifungal activity. Biointerface Research in Applied Chemistry, 2020, 10, 4902-4907.	1.0	11
102	Curcuminoid Extraction from Turmeric (<i>C urcuma Longa</i> â€L.): Efficacy of Bromine-Modified Curcuminoids Against Food Spoilage Flora. Journal of Food Biochemistry, 2015, 39, 325-333.	2.9	10
103	PREPARATION AND CHARACTERIZATION OF ACTIVATED CARBON FROM OIL PALM EMPTY FRUIT BUNCH WASTES USING ZINC CHLORIDE. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.4	10
104	THE REMOVAL OF METHYLENE BLUE AND REMAZOL BRILLIANT BLUE R DYES BY USING ORANGE PEEL AND SPENT TEA LEAVES. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.4	10
105	Mathematical model of organic substrate degradation in solid waste windrow composting. Bioprocess and Biosystems Engineering, 2016, 39, 81-94.	3.4	10
106	Isotherm and kinetics studies for the adsorption of bisphenol A from aqueous solution by activated carbon of <i>Musa acuminata</i> . IOP Conference Series: Materials Science and Engineering, 0, 495, 012059.	0.6	10
107	A Self-Care Prediction Model for Children with Disability Based on Genetic Algorithm and Extreme Gradient Boosting. Mathematics, 2020, 8, 1590.	2.2	10
108	Identification of metabolites from phenanthrene oxidation by phenoloxidases and dioxygenases of Polyporus sp. S133. Journal of Microbiology and Biotechnology, 2011, 21, 299-304.	2.1	10

#	Article	IF	CITATIONS
109	Pyrene Metabolism by New Species Isolated from Soil Rhizoctonia Zeae SOL3. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	9
110	Exploration of fast growing Botryococcus sudeticus for upstream and downstream process in sustainable biofuels production. Journal of Cleaner Production, 2015, 92, 162-167.	9.3	9
111	Potential Use of a Pathogenic Yeast Pichia kluyveri FM012 for Degradation of Dichlorodiphenyltrichloroethane (DDT). Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	9
112	Adsorption of bisphenol A on oil palm biomass activated carbon: characterization, isotherm, kinetic and thermodynamic studies. Biointerface Research in Applied Chemistry, 2019, 9, 4217-4224.	1.0	9
113	Effects of Mediators for Ligninolytic Enzyme Production and Kinetic Studies on Degradation of Pentachlorobenzene by Trametes versicolor U80. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	8
114	Ligninolytic fungus Polyporus sp. S133 mediated metabolic degradation of fluorene. Brazilian Journal of Microbiology, 2016, 47, 610-616.	2.0	8
115	Removal of Cresol Red by Adsorption Using Wastepaper. , 2022, 2, 1-8.		8
116	Biosorption and biotransformation of fluoranthene by the whiteâ€rot fungus <i>Pleurotus eryngii</i> F032. Biotechnology and Applied Biochemistry, 2014, 61, 126-133.	3.1	7
117	Advanced Degradation of Lignin from Palm Oil Mill Effluent (POME) by a Combination of Photocatalytic-Fenton Treatment and TiO2 Nanoparticle as the Catalyst. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	7
118	Bioremediation of Diesel Oil Spill by Filamentous Fungus Trichoderma reesei H002 in Aquatic Environment. International Journal of Integrated Engineering, 2018, 10, .	0.4	7
119	Bisphenol A Removal by Adsorption Using Waste Biomass: Isotherm and Kinetic Studies. Biointerface Research in Applied Chemistry, 2020, 11, 8467-8481.	1.0	7
120	Removal of Procion Red MX- 5B from aqueous solution by adsorption on Parkia speciosa (stink bean) peel powder. Biointerface Research in Applied Chemistry, 2020, 10, 4774-4779.	1.0	7
121	Microbial transformation and sorption of anthracene in liquid culture. Bioprocess and Biosystems Engineering, 2013, 36, 1229-1233.	3.4	6
122	Enhanced Degradation of Pyrene and Metabolite Identification by Pleurotus eryngii F032. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	6
123	REMOVAL OF BRILLIANT GREEN AND PROCIONRED DYES FROM AQUEOUS SOLUTIONBY ADSORPTION USING SELECTED AGRICULTURAL WASTES. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.4	5
124	Bioethanol Mill Wastewater Purification by Combination of Coagulation-Flocculation and Microbial Treatment of Trametes versicolor INACC F200. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	5
125	Innovative Chemically Modified Biosorbent for Removal of Procion Red. International Journal of Technology, 2019, 10, 776.	0.8	5
126	Reactive dyes adsorption via Citrus hystrix peel powder and Zea mays cob powder: characterization, isotherm and kinetic studies. Biointerface Research in Applied Chemistry, 2020, 10, 4803-4810.	1.0	5

#	Article	IF	CITATIONS
127	Adsorption of Phenol Red and Remazol Brilliant Blue R by Coconut Shells (Cocos nucifera) and Ambarella Peels (Spondias dulcis). Biointerface Research in Applied Chemistry, 2020, 11, 8564-8576.	1.0	5
128	Cresol Red Dye Removal Using Recycled Waste Tire Rubber. International Journal of Engineering Research in Africa, 2015, 16, 57-63.	0.7	4
129	Removal of triphenylmethane dye from aqueous solutions through an adsorption process over waste materials. Biointerface Research in Applied Chemistry, 2020, 10, 5772-5779.	1.0	4
130	Development of activated carbon from Eichhornia Crassipes via chemical activation and its application to remove a synthetic dye. Biointerface Research in Applied Chemistry, 2019, 9, 4394-4400.	1.0	4
131	Optimization of Parameters Affecting Adsorption of Nickel (II), Zinc (II) and Lead (II) on Dowex 50 W Resin Using a Response Surface Methodology Approach. Journal of Environmental Science and Technology, 2013, 6, 106-118.	0.3	4
132	Active Learning Strategies in the Environmental Engineering Course: A Case Study at Curtin University Malaysia. Jurnal Pendidikan IPA Indonesia, 2019, 8, .	1.3	4
133	Biotransformation Studies on Fluoranthene, a Four-ring Polycylic Aromatic Hydrocarbon, by White-rot Fungus Armillaria sp. F022. Agriculture and Agricultural Science Procedia, 2015, 3, 45-50.	0.6	3
134	Equilibrium, kinetic and thermodynamic analysis petroleum oil adsorption from aqueous solution by magnetic activated carbon. IOP Conference Series: Materials Science and Engineering, 2019, 495, 012060.	0.6	3
135	Adsorption of ammonium from wastewater treatment plant effluents onto the zeolite; A plug-flow column, optimisation, dynamic and isotherms studies. International Journal of Environmental Analytical Chemistry, 2022, 102, 8445-8466.	3.3	3
136	Palm Oil Industries in Malaysia and Possible Treatment Technologies for Palm Oil Mill Effluent: A Review. Environmental Research, Engineering and Management, 2021, 77, 50-65.	1.0	3
137	The Decrease of Organic Substance Concentration (KMnO4) and Turbidity in Well (Ground) Water Using Biosand Filter Reactor. Journal of Environmental Science and Technology, 2012, 5, 430-440.	0.3	3
138	Effect of Metals on Amaranth Decolorization by White-Rot Fungus Pleurotus eryngi F019. Journal of Biological Sciences, 2013, 13, 550-554.	0.3	3
139	UTILIZATION OF DURIAN PEEL AS POTENTIAL ADSORBENT FOR BISPHENOL A REMOVAL IN AQUOEUS SOLUTION. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.4	2
140	Oil Spill Remediation by Adsorption Using Two Forms of Activated Carbon in Marine Environment. , 2018, , .		2
141	Fast and Efficient Removal of Oil from Water Surface Through Activated Carbon and Iron Oxide-Magnetic Nanocomposite. , 2018, , .		2
142	Kinetic and isotherm studies of adsorption processes in the removal of reactive dyes from aqueous solutions. IOP Conference Series: Materials Science and Engineering, 2019, 495, 012062.	0.6	2
143	Effects of Glucose on the Reactive Black 5 (RB5) Decolorization by Two White Rot Basidiomycetes. ITB Journal of Science, 2011, 43, 179-186.	0.1	2
144	Metagenomic Analysis of 16S rRNA Sequences from Selected Rivers in Johor Malaysia. Journal of Applied Sciences, 2012, 12, 354-361.	0.3	2

#	Article	IF	CITATIONS
145	Evaluation of protein content and antioxidant activity of edible bird's nest by various methods. Biointerface Research in Applied Chemistry, 2020, 10, 5277-5283.	1.0	2
146	REMOVAL OF CRESOL RED AND REACTIVE BLACK 5 DYES BY USING SPENT TEA LEAVES AND SUGARCANE BAGGASE POWDER. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.4	1
147	Functionalized Stink Bean Pod (Parkia speciosa) Powder for Adsorption of Reactive Dye. Biointerface Research in Applied Chemistry, 2021, 11, 11616-11629.	1.0	1
148	Characterization and Mechanisms of a New Carbonaceous Adsorbent Based on Black Liquor Loaded with Iron Oxide for Removal of Tripolyphosphate Ions. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	0
149	Biotransformation of Anthraquinone Dye by Microbial Enzymes. Sustainable Textiles, 2022, , 87-106.	0.7	0
150	TEACHING GREEN ENGINEERING PRINCIPLES AND APPLICATION THROUGH ACTIVE LEARNING. International Journal of Indonesian Education and Teaching, 2019, 3, 194-203.	0.2	0