Rita Cortesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2902758/publications.pdf

Version: 2024-02-01

140 papers

4,632 citations

38 h-index 61 g-index

142 all docs $\begin{array}{c} 142 \\ \text{docs citations} \end{array}$

142 times ranked 5188 citing authors

#	Article	IF	CITATIONS
1	Manganese in Diagnostics: A Preformulatory Study. Pharmaceutics, 2022, 14, 108.	4.5	5
2	Antioxidant-containing monoolein aqueous dispersions: a preliminary study. Drug Delivery and Translational Research, 2022, , $1.$	5.8	3
3	A spectrofluorometric analysis to evaluate transcutaneous biodistribution of fluorescent nanoparticulate gel formulations. European Journal of Histochemistry, 2022, 66, .	1.5	6
4	Antisense Oligonucleotides Conjugated with Lipophilic Compounds: Synthesis and In Vitro Evaluation of Exon Skipping in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 4270.	4.1	4
5	Synthetic and Nanotechnological Approaches for a Diagnostic Use of Manganese. Molecules, 2022, 27, 3124.	3.8	4
6	Ethosomes and Transethosomes as Cutaneous Delivery Systems for Quercetin: A Preliminary Study on Melanoma Cells. Pharmaceutics, 2022, 14, 1038.	4.5	24
7	Design of propolis-loaded film forming systems for topical administration: The effect of acrylic acid derivative polymers. Journal of Molecular Liquids, 2021, 322, 114514.	4.9	17
8	Challenges in the Physical Characterization of Lipid Nanoparticles. Pharmaceutics, 2021, 13, 549.	4.5	44
9	Ethosomes and Transethosomes for Mangiferin Transdermal Delivery. Antioxidants, 2021, 10, 768.	5.1	44
10	"Plurethosome―as Vesicular System for Cutaneous Administration of Mangiferin: Formulative Study and 3D Skin Tissue Evaluation. Pharmaceutics, 2021, 13, 1124.	4.5	10
11	Design of Liposomes Carrying HelixComplex Snail Mucus: Preliminary Studies. Molecules, 2021, 26, 4709.	3.8	7
12	Lipid-Based Nanosystems as a Tool to Overcome Skin Barrier. International Journal of Molecular Sciences, 2021, 22, 8319.	4.1	53
13	Mangiferin-Loaded Smart Gels for HSV-1 Treatment. Pharmaceutics, 2021, 13, 1323.	4.5	5
14	The Potential of Caffeic Acid Lipid Nanoparticulate Systems for Skin Application: In Vitro Assays to Assess Delivery and Antioxidant Effect. Nanomaterials, 2021, 11, 171.	4.1	26
15	Monolein Aqueous Dispersions as a Tool to Increase Flavonoid Solubility: A Preliminary Study. Proceedings (mdpi), 2021, 78, 25.	0.2	1
16	Gallic acid loaded poloxamer gel as new adjuvant strategy for melanoma: A preliminary study. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110613.	5.0	25
17	Design of Nanosystems for the Delivery of Quorum Sensing Inhibitors: A Preliminary Study. Molecules, 2020, 25, 5655.	3.8	15
18	Design and Characterization of Ethosomes for Transdermal Delivery of Caffeic Acid. Pharmaceutics, 2020, 12, 740.	4.5	46

#	Article	IF	CITATIONS
19	Ethosomes for Coenzyme Q10 Cutaneous Administration: From Design to 3D Skin Tissue Evaluation. Antioxidants, 2020, 9, 485.	5.1	32
20	A Correlative Imaging Study of in vivo and ex vivo Biodistribution of Solid Lipid Nanoparticles International Journal of Nanomedicine, 2020, Volume 15, 1745-1758.	6.7	14
21	Ellagic Acid Containing Nanostructured Lipid Carriers for Topical Application: A Preliminary Study. Molecules, 2020, 25, 1449.	3.8	29
22	Nanoparticulate Gels for Cutaneous Administration of Caffeic Acid. Nanomaterials, 2020, 10, 961.	4.1	23
23	Nanotechnological Strategies for Administration of Poorly Soluble Neuroactive Drugs. Proceedings (mdpi), 2020, 78, .	0.2	1
24	Nanomedicines to Treat Skin Pathologies with Natural Molecules. Current Pharmaceutical Design, 2019, 25, 2323-2337.	1.9	30
25	Lipid nanostructures for antioxidant delivery: a comparative preformulation study. Beilstein Journal of Nanotechnology, 2019, 10, 1789-1801.	2.8	17
26	Lipid Nanoparticles and Active Natural Compounds: A Perfect Combination for Pharmaceutical Applications. Current Medicinal Chemistry, 2019, 26, 4681-4696.	2.4	19
27	New Strategies for the Delivery of Some Natural Anti-oxidants with Therapeutic Properties. Mini-Reviews in Medicinal Chemistry, 2019, 19, 1030-1039.	2.4	11
28	Thermal Magnetic Field Activated Propolis Release From Liquid Crystalline System Based on Magnetic Nanoparticles. AAPS PharmSciTech, 2018, 19, 3258-3271.	3.3	23
29	Monoolein liquid crystalline phases for topical delivery of crocetin. Colloids and Surfaces B: Biointerfaces, 2018, 171, 67-74.	5.0	20
30	Production and Characterization of a Clotrimazole Liposphere Gel for Candidiasis Treatment. Polymers, 2018, 10, 160.	4.5	11
31	Production and Characterization of Nanoparticle Based Hyaluronate Gel Containing Retinyl Palmitate for Wound Healing. Current Drug Delivery, 2018, 15, 1172-1182.	1.6	13
32	Nanostructured lipid carriers (NLC) for the delivery of natural molecules with antimicrobial activity: production, characterisation and <i>in vitro</i> studies. Journal of Microencapsulation, 2017, 34, 63-72.	2.8	38
33	Solid lipid nanoparticles for the delivery of 1,3,5-triaza-7-phosphaadamantane (PTA) platinum (II) carboxylates. Materials Science and Engineering C, 2017, 74, 357-364.	7.3	6
34	Nanoformulations for dimethyl fumarate: Physicochemical characterization and in vitro / in vivo behavior. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 285-296.	4.3	29
35	Monoolein aqueous dispersions as a delivery system for quercetin. Biomedical Microdevices, 2017, 19 , 41 .	2.8	15
36	Microparticles containing gallic and ellagic acids for the biological control of bacterial diseases of kiwifruit plants. Journal of Plant Diseases and Protection, 2017, 124, 563-575.	2.9	11

#	Article	IF	CITATIONS
37	L-dopa co-drugs in nanostructured lipid carriers: A comparative study. Materials Science and Engineering C, 2017, 72, 168-176.	7.3	20
38	Lipid nanoparticles for administration of poorly water soluble neuroactive drugs. Biomedical Microdevices, 2017, 19, 44.	2.8	22
39	Data on scaling up and in vivo human study of progesterone lipid nanoparticles. Data in Brief, 2017, 14, 639-642.	1.0	2
40	Progesterone lipid nanoparticles: Scaling up and in vivo human study. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 437-446.	4.3	29
41	Nanostructured lipid systems modified with waste material of propolis for wound healing: Design, in vitro and in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2017, 158, 441-452.	5.0	57
42	Natural antimicrobials in spray-dried microparticles based on cellulose derivatives as potential eco-compatible agrochemicals. Journal of Plant Diseases and Protection, 2017, 124, 269-278.	2.9	12
43	Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Materials Science and Engineering C, 2017, 71, 669-677.	7.3	49
44	Nafion \hat{A}^{\otimes} -Containing Solid Lipid Nanoparticles as a Tool for Anticancer Pt Delivery: Preliminary Studies. Journal of Chemistry, 2017, 2017, 1-6.	1.9	4
45	Investigation of the Bioequivalence of Rosuvastatin 20 mg Tablets after a Single Oral Administration in Mediterranean Arabs Using a Validated LC-MS/MS Method. Scientia Pharmaceutica, 2016, 84, 536-546.	2.0	4
46	Ethosomes and organogels for cutaneous administration of crocin. Biomedical Microdevices, 2016, 18, 108.	2.8	26
47	Encapsulation of cannabinoid drugs in nanostructured lipid carriers. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 102, 87-91.	4.3	39
48	Gelified reverse micellar dispersions as percutaneous formulations. Journal of Drug Delivery Science and Technology, 2016, 32, 270-282.	3.0	3
49	Structural Studies of Lipid-Based Nanosystems for Drug Delivery: X-ray Diffraction (XRD) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). , 2016, , 861-889.		4
50	Cubic Phases, Cubosomes and Ethosomes for Cutaneous Application. Current Pharmaceutical Design, 2016, 22, 5382-5399.	1.9	13
51	Waste Material of Propolis as a Film Forming Agent Intended to Modify the Metronidazole Release: Preparation and Characterization. Current Drug Delivery, 2016, 13, 1152-1164.	1.6	9
52	Effect of new curcuminâ€containing nanostructured lipid dispersions on human keratinocytes proliferative responses. Experimental Dermatology, 2015, 24, 449-454.	2.9	21
53	Pharmaceutical films made from the waste material from the preparation of propolis extracts: development and characterization. Brazilian Journal of Pharmaceutical Sciences, 2015, 51, 847-859.	1.2	24
54	Lipid-based nanoparticles containing cationic derivatives of PTA (1,3,5-triaza-7-phosphaadamantane) as innovative vehicle for Pt complexes: Production, characterization and in vitro studies. International Journal of Pharmaceutics, 2015, 492, 291-300.	5.2	7

#	Article	IF	CITATIONS
55	Cannabinoid antagonist in nanostructured lipid carriers (NLCs): design, characterization and in vivo study. Materials Science and Engineering C, 2015, 48, 328-336.	7.3	43
56	Biodistribution of nanostructured lipid carriers: A tomographic study. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 145-156.	4.3	29
57	Lipid nanocarriers containing a levodopa prodrug with potential antiparkinsonian activity. Materials Science and Engineering C, 2015, 48, 294-300.	7.3	11
58	Structural Studies of Lipid-Based Nanosystems for Drug Delivery: X-ray Diffraction (XRD) and Cryogenic Transmission Electron Microscopy (Cryo-TEM)., 2015,, 1-23.		3
59	Polymeric microparticles for fenretinide administration. Macromolecular Symposia, 2014, 345, 14-23.	0.7	0
60	Cationic lipid nanosystems as carriers for nucleic acids. New Biotechnology, 2014, 31, 44-54.	4.4	35
61	Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 121-132.	4.3	41
62	Curcumin containing monoolein aqueous dispersions: A preformulative study. Materials Science and Engineering C, 2013, 33, 4923-4934.	7.3	42
63	Intranasal immunization in mice with non-ionic surfactants vesicles containing HSV immunogens: A preliminary study as possible vaccine against genital herpes. International Journal of Pharmaceutics, 2013, 440, 229-237.	5 . 2	31
64	Evaluation of Monooleine Aqueous Dispersions as Tools for Topical Administration of Curcumin: Characterization, In Vitro and Ex-Vivo Studies. Journal of Pharmaceutical Sciences, 2013, 102, 2349-2361.	3.3	42
65	Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies. International Journal of Pharmaceutics, 2013, 454, 695-702.	5.2	70
66	Design and characterization of fenretinide containing organogels. Materials Science and Engineering C, 2013, 33, 383-389.	7.3	14
67	Clotrimazole nanoparticle gel for mucosal administration. Materials Science and Engineering C, 2013, 33, 411-418.	7.3	58
68	Analysis of the Drug Release Profiles from Formulations Based on Micro and Nano Systems. Current Analytical Chemistry, 2013, 9, 37-46.	1.2	4
69	Nanoparticulate lipid dispersions for bromocriptine delivery: Characterization and in vivo study. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 306-314.	4.3	106
70	Analysis of the Drug Release Profiles from Formulations Based on Micro and Nano Systems. Current Analytical Chemistry, 2012, 9, 37-46.	1.2	1
71	Long-chain cationic derivatives of PTA (1,3,5-triaza-7-phosphaadamantane) as new components of potential non-viral vectors. International Journal of Pharmaceutics, 2012, 431, 176-182.	5.2	10
72	Eudragit $<$ sup $>$ \hat{A}^{\odot} $<$ /sup $>$ microparticles for the release of budesonide: A comparative study. Indian Journal of Pharmaceutical Sciences, 2012, 74, 403.	1.0	17

#	Article	IF	CITATIONS
73	Formulation and Bioequivalence of Two Valsartan Tablets After a Single Oral Administration. Scientia Pharmaceutica, 2011, 79, 123-135.	2.0	13
74	Colloidal dispersions for the delivery of acyclovir: A comparative study. Indian Journal of Pharmaceutical Sciences, 2011, 73, 687.	1.0	16
75	Effect of charge and lipid concentration on in-vivo percutaneous absorption of methyl nicotinate from liposomal vesicles. Journal of Pharmacy and Pharmacology, 2010, 57, 1169-1176.	2.4	10
76	Evaluation of Percutaneous Absorption of Naproxen from Different Liposomal Formulations. Journal of Pharmaceutical Sciences, 2010, 99, 2819-2829.	3.3	31
77	Liposomes- and ethosomes-associated distamycins: a comparative study. Journal of Liposome Research, 2010, 20, 277-285.	3.3	26
78	Distamycins: Strategies for Possible Enhancement of Activity and Specificity. Mini-Reviews in Medicinal Chemistry, 2010, 10, 218-231.	2.4	10
79	Interchangeability of two 500 mg amoxicillin capsules with one 1000 mg amoxicillin tablet after a single oral administration. Indian Journal of Pharmaceutical Sciences, 2010, 72, 414.	1.0	3
80	Solid Lipid Nanoparticles as Delivery Systems for Bromocriptine. Pharmaceutical Research, 2008, 25, 1521-1530.	3.5	164
81	Peptide-based cationic molecules for the production of positive charged liposomes and micelles. Journal of Microencapsulation, 2008, 25, 71-81.	2.8	2
82	Acyclovir delivery systems. Expert Opinion on Drug Delivery, 2008, 5, 1217-1230.	5.0	27
83	Cellulose acetate butyrate–pH/thermosensitive polymer microcapsules containing aminated poly(vinyl) Tj ETQq Biopharmaceutics, 2007, 66, 11-20.	1 1 0.784 4.3	_
84	Eudragit \hat{A}^{\otimes} microparticles as a possible tool for ophthalmic administration of acyclovir. Journal of Microencapsulation, 2007, 24, 445-456.	2.8	15
85	Liposomes and Micellar Dispersions For Delivery of Benzoheterocyclic Derivatives of Distamycin A. Drug Delivery, 2007, 14, 1-8.	5.7	10
86	Poly[(N-isopropylacrylamide-co-acrylamide-co-(hydroxyethylmethacrylate))] thermoresponsive microspheres: An accurate method based on solute exclusion technique to determine the volume phase transition temperature. European Polymer Journal, 2007, 43, 3500-3509.	5.4	21
87	A novel multicompartimental system based on aminated poly(vinyl alcohol) microspheres/succinoylated pullulan microspheres for oral delivery of anionic drugs. International Journal of Pharmaceutics, 2007, 330, 129-137.	5.2	23
88	Non-phospholipid vesicles as carriers for peptides and proteins: Production, characterization and stability studies. International Journal of Pharmaceutics, 2007, 339, 52-60.	5.2	26
89	Nanosystems for skin hydration: a comparative study. International Journal of Cosmetic Science, 2007, 29, 39-47.	2.6	24
90	Cationic liposomes as potential carriers for ocular administration of peptides with anti-herpetic activity. International Journal of Pharmaceutics, 2006, 317, 90-100.	5.2	60

Article	IF	CITATIONS
Hyaluronan-based microspheres as tools for drug delivery: a comparative study. International Journal of Pharmaceutics, 2005, 288, 35-49.	5.2	97
Cellulose acetate butyrate microcapsules containing dextran ion-exchange resins as self-propelled drug release system. Biomaterials, 2005, 26, 4337-4347.	11.4	57
Preparation and Characterisation of Thermoresponsive		
	Hyaluronan-based microspheres as tools for drug delivery: a comparative study. International Journal of Pharmaceutics, 2005, 288, 35-49. Cellulose acetate butyrate microcapsules containing dextran ion-exchange resins as self-propelled drug release system. Biomaterials, 2005, 26, 4337-4347.	Hyaluronan-based microspheres as tools for drug delivery: a comparative study. International Journal of Pharmaceutics, 2005, 288, 35-49. Cellulose acetate butyrate microcapsules containing dextran ion-exchange resins as self-propelled drug release system. Biomaterials, 2005, 26, 4337-4347.

#	Article	IF	Citations
109	Spray dried Eudragit microparticles as encapsulation devices for vitamin C. International Journal of Pharmaceutics, 2002, 242, 329-334.	5.2	90
110	Production of lipospheres as carriers for bioactive compounds. Biomaterials, 2002, 23, 2283-2294.	11.4	179
111	Tailor-made core-shell nanospheres for antisense oligonucleotide delivery: IV.Adsorption/release behaviour. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 1339-1357.	3.5	4
112	Delivery systems for DNA-binding drugs as gene expression modulators. Drug Discovery Today, 2001, 6, 893-904.	6.4	7
113	Pectinâ€Based Microspheres. Annals of the New York Academy of Sciences, 2001, 944, 160-179.	3.8	23
114	Liposomes as carriers for DNA–PNA hybrids. Journal of Controlled Release, 2000, 68, 237-249.	9.9	56
115	Effect of DNA Complexation and Freeze-Drying on the Physicochemical Characteristics of Cationic Liposomes. Oligonucleotides, 2000, 10, 205-215.	4.3	8
116	Production of Eudragit Microparticles by Spray-Drying Technique: Influence of Experimental Parameters on Morphological and Dimensional Characteristics. Pharmaceutical Development and Technology, 2000, 5, 267-278.	2.4	82
117	In Vitro Antiproliferative Activity of Isothiocyanates and Nitriles Generated by Myrosinase-Mediated Hydrolysis of Glucosinolates from Seeds of Cruciferous Vegetables. Journal of Agricultural and Food Chemistry, 2000, 48, 3572-3575.	5 . 2	71
118	Preparation and characterization of cationic microspheres for gene delivery. International Journal of Pharmaceutics, 1999, 189, 29-41.	5.2	40
119	Liposomes, micelles and microemulsions as new delivery systems for cytotoxic alkaloids. Pharmaceutical Science & Technology Today, 1999, 2, 288-298.	0.7	25
120	In vitro effect on human leukemic K562 cells of co-administration of liposome-associated retinoids and cytosine arabinoside (ara-C)., 1999, 62, 33-43.		18
121	Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. Journal of Microencapsulation, 1999, 16, 251-256.	2.8	87
122	Dextran cross-linked gelatin microspheres as a drug delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 47, 153-160.	4.3	66
123	Cross-Enzyme Inhibition by Gabexate Mesylate: Formulation and Reactivity Study. Journal of Pharmaceutical Sciences, 1998, 87, 1335-1340.	3.3	13
124	Sugar cross-linked gelatin for controlled release: microspheres and disks. Biomaterials, 1998, 19, 1641-1649.	11.4	133
125	Influence of liposomal formulation parameters on the in vitro absorption of methyl nicotinate. International Journal of Pharmaceutics, 1998, 172, 255-260.	5 . 2	12
126	Production and antiproliferative activity of liposomes containing the antitumour drug chromomycin A ₃ . Journal of Microencapsulation, 1998, 15, 465-472.	2.8	4

#	Article	IF	CITATIONS
127	Myrosinase-generated isothiocyanate from glucosinolates: Isolation, characterization and in vitro antiproliferative studies. Bioorganic and Medicinal Chemistry, 1997, 5, 1799-1806.	3.0	65
128	Formulation study for the antitumor drug camptothecin: liposomes, micellar solutions and a microemulsion. International Journal of Pharmaceutics, 1997, 159, 95-103.	5 . 2	105
129	In VitroCytotoxic Activity of Some Glucosinolate-Derived Products Generated by Myrosinase Hydrolysis. Journal of Agricultural and Food Chemistry, 1996, 44, 1014-1021.	5. 2	70
130	Production and characterization of biodegradable microparticles for the controlled delivery of proteinase inhibitors. International Journal of Pharmaceutics, 1996, 129, 263-273.	5.2	13
131	Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA. International Journal of Pharmaceutics, 1996, 139, 69-78.	5.2	108
132	Gelatin microspheres: influence of preparation parameters and thermal treatment on chemico-physical and biopharmaceutical properties. Biomaterials, 1996, 17, 2009-2020.	11.4	152
133	Controlled release of $1-\hat{l}^2$ -D-arabinofuranosylcytosine (ara-C) from hydrophilic gelatin microspheres: in vitro studies. International Journal of Pharmaceutics, 1995, 117, 151-158.	5.2	11
134	Effects of phospholipid based formulations on in vitro and in vivo percutaneous absorption of methyl nicotinate. Journal of Controlled Release, 1995, 34, 53-63.	9.9	74
135	Production and in vitro evaluation of gelatin microspheres containing an antitumour tetra-amidine. Journal of Microencapsulation, $1994,11,249-260.$	2.8	27
136	Gelatin microspheres as a new approach for the controlled delivery of synthetic oligonucleotides and PCR-generated DNA fragments. International Journal of Pharmaceutics, 1994, 105, 181-186.	5.2	27
137	Kinetics of bromocriptine release from microspheres: Comparative analysis between different in vitro models. Journal of Microencapsulation, 1994, 11, 565-574.	2.8	34
138	Macrophages loaded with doxorubicin by ATP-mediated permeabilization: Potential carriers for antitumor therapy. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1224, 269-276.	4.1	24
139	Liposome-associated retinoids: production, characterization and antiproliferative activity on neoplastic cells. European Journal of Pharmaceutical Sciences, 1994, 2, 281-291.	4.0	13
140	DNA binding activity and inhibition of DNA-protein interactions. Biochemical Pharmacology, 1992, 44, 1985-1994.	4.4	8