
Jianguang Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2902716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bulletin of the American Meteorological Society, 2013, 94, 1145-1160.	3.3	705
2	Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sensing of Environment, 2020, 240, 111680.	11.0	120
3	Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments. Remote Sensing, 2018, 10, 370.	4.0	93
4	Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sensing of Environment, 2018, 205, 210-223.	11.0	75
5	Advances in quantitative remote sensing product validation: Overview and current status. Earth-Science Reviews, 2019, 196, 102875.	9.1	63
6	Scale effect and scale correction of land-surface albedo in rugged terrain. International Journal of Remote Sensing, 2009, 30, 5397-5420.	2.9	46
7	Modeling Anisotropic Reflectance Over Composite Sloping Terrain. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 3903-3923.	6.3	46
8	Parametrized BRDF for atmospheric and topographic correction and albedo estimation in Jiangxi rugged terrain, China. International Journal of Remote Sensing, 2009, 30, 2875-2896.	2.9	44
9	Multi-scale validation strategy for satellite albedo products and its uncertainty analysis. Science China Earth Sciences, 2015, 58, 573-588.	5.2	41
10	Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations. Remote Sensing of Environment, 2019, 232, 111320.	11.0	40
11	Coarse scale in situ albedo observations over heterogeneous snow-free land surfaces and validation strategy: A case of MODIS albedo products preliminary validation over northern China. Remote Sensing of Environment, 2016, 184, 25-39.	11.0	35
12	Simulation and Analysis of the Topographic Effects on Snow-Free Albedo over Rugged Terrain. Remote Sensing, 2018, 10, 278.	4.0	32
13	Evaluation of the Airborne CASI/TASI Ts-VI Space Method for Estimating Near-Surface Soil Moisture. Remote Sensing, 2015, 7, 3114-3137.	4.0	31
14	Modeling Land Surface Reflectance Coupled BRDF for HJ-1/CCD Data of Rugged Terrain in Heihe River Basin, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 1506-1518.	4.9	31
15	A review of the estimation of downward surface shortwave radiation based on satellite data: Methods, progress and problems. Science China Earth Sciences, 2020, 63, 774-789.	5.2	30
16	The definition of remotely sensed reflectance quantities suitable for rugged terrain. Remote Sensing of Environment, 2019, 225, 403-415.	11.0	25
17	Modeling Discrete Forest Anisotropic Reflectance Over a Sloped Surface With an Extended GOMS and SAIL Model. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 944-957.	6.3	25
18	Characterization of Remote Sensing Albedo Over Sloped Surfaces Based on DART Simulations and In Situ Observations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8599-8622.	3.3	24

JIANGUANG WEN

#	Article	IF	CITATIONS
19	Characterizing the Pixel Footprint of Satellite Albedo Products Derived from MODIS Reflectance in the Heihe River Basin, China. Remote Sensing, 2015, 7, 6886-6907.	4.0	23
20	Forward a Small-Timescale BRDF/Albedo by Multisensor Combined BRDF Inversion Model. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 683-697.	6.3	23
21	Direct Comparison and Triple Collocation: Which Is More Reliable in the Validation of Coarseâ€Scale Satellite Surface Albedo Products. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5198-5213.	3.3	23
22	An Improved Land-Surface Albedo Algorithm With DEM in Rugged Terrain. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 883-887.	3.1	22
23	DSCOVR/EPIC-derived global hourly and daily downward shortwave and photosynthetically active radiation data at 0.1° × 0.1° resolution. Earth System Science Data, 2020, 12, 2209-2221.	9.9	21
24	Characterizing the Effect of Spatial Heterogeneity and the Deployment of Sampled Plots on the Uncertainty of Ground "Truth―on a Coarse Grid Scale: Case Study for Nearâ€Infrared (NIR) Surface Reflectance. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	21
25	Mapping High-Resolution Soil Moisture over Heterogeneous Cropland Using Multi-Resource Remote Sensing and Ground Observations. Remote Sensing, 2015, 7, 13273-13297.	4.0	19
26	Sensitivity of Coarseâ€5cale Snowâ€Free Land Surface Shortwave Albedo to Topography. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9028-9045.	3.3	19
27	Spatiotemporal Variability of Land Surface Albedo over the Tibet Plateau from 2001 to 2019. Remote Sensing, 2020, 12, 1188.	4.0	19
28	The Angular and Spectral Kernel Model for BRDF and Albedo Retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3, 241-256.	4.9	18
29	Development of a High Resolution BRDF/Albedo Product by Fusing Airborne CASI Reflectance with MODIS Daily Reflectance in the Oasis Area of the Heihe River Basin, China. Remote Sensing, 2015, 7, 6784-6807.	4.0	18
30	Accuracy Assessment on MODIS (V006), GLASS and MuSyQ Land-Surface Albedo Products: A Case Study in the Heihe River Basin, China. Remote Sensing, 2018, 10, 2045.	4.0	18
31	An Improved Topography-Coupled Kernel-Driven Model for Land Surface Anisotropic Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2833-2847.	6.3	16
32	Algorithms for Calculating Topographic Parameters and Their Uncertainties in Downward Surface Solar Radiation (DSSR) Estimation. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 1149-1153.	3.1	15
33	Assessment of NPP VIIRS Albedo Over Heterogeneous Crop Land in Northern China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,138.	3.3	12
34	Impacts of DEM Geolocation Bias on Downward Surface Shortwave Radiation Estimation Over Clear-Sky Rugged Terrain: A Case Study in Dayekou Basin, China. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 10-14.	3.1	12
35	A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China. Remote Sensing, 2018, 10, 156.	4.0	11
36	Derivation of Kernel Functions for Kernel-Driven Reflectance Model Over Sloping Terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 396-409.	4.9	11

JIANGUANG WEN

#	Article	IF	CITATIONS
37	Mapping Soil Moisture at a High Resolution over Mountainous Regions by Integrating In Situ Measurements, Topography Data, and MODIS Land Surface Temperatures. Remote Sensing, 2019, 11, 656.	4.0	9
38	Optimal Nodes Selectiveness from WSN to Fit Field Scale Albedo Observation and Validation in Long Time Series in the Foci Experiment Areas, Heihe. Remote Sensing, 2015, 7, 14757-14780.	4.0	8
39	Multi-Staged NDVI Dependent Snow-Free Land-Surface Shortwave Albedo Narrowband-to-Broadband (NTB) Coefficients and Their Sensitivity Analysis. Remote Sensing, 2017, 9, 93.	4.0	8
40	Impacts and Contributors of Representativeness Errors of \$In~Situ\$ Albedo Measurements for the Validation of Remote Sensing Products. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 9740-9755.	6.3	8
41	Improving Kernel-Driven BRDF Model for Capturing Vegetation Canopy Reflectance With Large Leaf Inclinations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2639-2655.	4.9	8
42	Forward a spatio-temporal trend surface for long-term ground-measured albedo upscaling over heterogeneous land surface. International Journal of Digital Earth, 2018, 11, 470-484.	3.9	7
43	Upscaling of Single-Site-Based Measurements for Validation of Long-Term Coarse-Pixel Albedo Products. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 3411-3425.	6.3	7
44	Spatial Heterogeneity of Albedo at Subpixel Satellite Scales and its Effect in Validation: Airborne Remote Sensing Results From HiWATER. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	7
45	Estimating Surface BRDF/Albedo Over Rugged Terrain Using an Extended Multisensor Combined BRDF Inversion (EMCBI) Model. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	7
46	Upscaling <i>in situ</i> albedo for validation of coarse scale albedo product over heterogeneous surfaces. International Journal of Digital Earth, 2017, 10, 604-622.	3.9	5
47	A Multiscale Nested Sampling Method for Representative Albedo Observations at Various Pixel Scales. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8193-8207.	4.9	5
48	A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product. International Journal of Digital Earth, 2018, 11, 308-328.	3.9	4
49	The Component-Spectra-Parameterized Angular and Spectral Kernel-Driven Model: A Potential Solution for Global BRDF/Albedo Retrieval From Multisensor Satellite Data. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8674-8688.	6.3	4
50	Upscaling <i>in Situ</i> Site-Based Albedo Using Machine Learning Models: Main Controlling Factors on Results. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6.3	3
51	Sloping Surface Reflectance: The Best Option for Satellite-Based Albedo Retrieval Over Mountainous Areas. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	3
52	Landsat Snow-Free Surface Albedo Estimation Over Sloping Terrain: Algorithm Development and Evaluation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	3
53	An Optical–Thermal Surface–Atmosphere Radiative Transfer Model Coupling Framework With Topographic Effects. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	6.3	2
54	Extending the GOSAILT Model to Simulate Sparse Woodland Bi-Directional Reflectance with Soil Reflectance Anisotropy Consideration. Remote Sensing, 2022, 14, 1001.	4.0	2

#	ARTICLE	IF	CITATIONS
55	Estimating High-Resolution Soil Moisture Over Mountainous Regions Using Remotely-Sensed Multispectral and Topographic Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 3637-3649.	4.9	2
56	Erratum to "algorithms for calculating topographic parameters and their uncertainties in downward surface solar radiation estimation―[aug 17 1149-1153]. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 160-160.	3.1	1
57	Exploring the Applicability of the Semi-Empirical BRDF Models at Different Scales Using Airborne Multi-Angular Observations. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	1
58	Sensitivity of Vegetation Shortwave Albedo to Topography. , 2019, , .		0

Sensitivity of Vegetation Shortwave Albedo to Topography. , 2019, , . 58