
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2902618/publications.pdf Version: 2024-02-01

KEVIN M RVAN

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
4	DRAM, a p53-Induced Modulator of Autophagy, Is Critical for Apoptosis. Cell, 2006, 126, 121-134.	13.5	1,232
5	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
6	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-880.	3.5	1,012
7	p53 and metabolism. Nature Reviews Cancer, 2009, 9, 691-700.	12.8	858
8	Role of NF-κB in p53-mediated programmed cell death. Nature, 2000, 404, 892-897.	13.7	713
9	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	3.5	615
10	p53 status determines the role of autophagy in pancreatic tumour development. Nature, 2013, 504, 296-300.	13.7	614
11	Mitochondrial inner membrane permeabilisation enables mt <scp>DNA</scp> release during apoptosis. EMBO Journal, 2018, 37, .	3.5	313
12	Mannose impairs tumour growth and enhances chemotherapy. Nature, 2018, 563, 719-723.	13.7	282
13	The multiple roles of autophagy in cancer. Carcinogenesis, 2011, 32, 955-963.	1.3	262
14	Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function. Molecular Cell, 2017, 66, 517-532.e9.	4.5	196
15	DRAM Links Autophagy to p53 and Programmed Cell Death. Autophagy, 2007, 3, 72-74.	4.3	186
16	Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspaseÂdeficiency. Nature Cell Biology, 2017, 19, 1116-1129.	4.6	181
17	The role of autophagy in tumour development and cancer therapy. Expert Reviews in Molecular Medicine, 2009, 11, e36.	1.6	177
18	Autophagy and cancer – issues we need to digest. Journal of Cell Science, 2012, 125, 2349-58.	1.2	176

#	Article	IF	CITATIONS
19	Characterization of Structural p53 Mutants Which Show Selective Defects in Apoptosis but Not Cell Cycle Arrest. Molecular and Cellular Biology, 1998, 18, 3692-3698.	1.1	174
20	Autophagy and Cancer. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008821-a008821.	2.3	138
21	Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 773-778.	3.3	127
22	D-mannose suppresses macrophage IL- $1\hat{l}^2$ production. Nature Communications, 2020, 11, 6343.	5.8	118
23	Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle, 2012, 11, 2022-2029.	1.3	105
24	p53 and autophagy in cancer: Guardian of the genome meets guardian of the proteome. European Journal of Cancer, 2011, 47, 44-50.	1.3	103
25	Lysosomal proteins in cell death and autophagy. FEBS Journal, 2015, 282, 1858-1870.	2.2	101
26	Autophagy in tumour cell death. Seminars in Cancer Biology, 2013, 23, 344-351.	4.3	99
27	c-Jun NH2-Terminal Kinase Activation Is Essential for DRAM-Dependent Induction of Autophagy and Apoptosis in 2-Methoxyestradiol–Treated Ewing Sarcoma Cells. Cancer Research, 2009, 69, 6924-6931.	0.4	71
28	Analysis of macroautophagy by immunohistochemistry. Autophagy, 2012, 8, 963-969.	4.3	67
29	A p53-derived apoptotic peptide derepresses p73 to cause tumor regression in vivo. Journal of Clinical Investigation, 2007, 117, 1008-1018.	3.9	65
30	Retrograde signaling from autophagy modulates stress responses. Science Signaling, 2017, 10, .	1.6	65
31	Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes and Development, 2009, 23, 1283-1288.	2.7	58
32	Analysis of DRAM-related proteins reveals evolutionarily conserved and divergent roles in the control of autophagy. Cell Cycle, 2009, 8, 2260-2265.	1.3	58
33	DRAM-1 encodes multiple isoforms that regulate autophagy. Autophagy, 2012, 8, 18-28.	4.3	57
34	Autophagy, the innate immune response and cancer. Molecular Oncology, 2020, 14, 1913-1929.	2.1	55
35	Modulation of the ATM/autophagy pathway by a G-quadruplex ligand tips the balance between senescence and apoptosis in cancer cells. Nucleic Acids Research, 2019, 47, 2739-2756.	6.5	50
36	Extracellular Adenosine Sensing—A Metabolic Cell Death Priming Mechanism Downstream of p53. Molecular Cell, 2013, 50, 394-406.	4.5	46

#	Article	IF	CITATIONS
37	BRD4-mediated repression of p53 is a target for combination therapy in AML. Nature Communications, 2021, 12, 241.	5.8	43
38	Autophagy: an adaptable modifier of tumourigenesis. Current Opinion in Genetics and Development, 2010, 20, 57-64.	1.5	39
39	p53-mediated induction of Noxa and p53AlP1 requires NFκB. Cell Cycle, 2010, 9, 947-952.	1.3	37
40	Involvement of RNA Polymerase III in Immune Responses. Molecular and Cellular Biology, 2015, 35, 1848-1859.	1.1	37
41	mTORC1 Activation Requires DRAM-1 by Facilitating Lysosomal Amino Acid Efflux. Molecular Cell, 2019, 76, 163-176.e8.	4.5	37
42	iASPP Inhibition: Increased Options in Targeting the p53 Family for Cancer Therapy: Figure 1 Cancer Research, 2008, 68, 4959-4962.	0.4	34
43	Activation of p73 and induction of Noxa by DNA damage requires NF-kappa B. Aging, 2009, 1, 335-349.	1.4	33
44	Splicing DNA-damage responses to tumour cell death. Biochimica Et Biophysica Acta: Reviews on Cancer, 2004, 1705, 3-15.	3.3	31
45	The cyclin-dependent kinase PITSLRE/CDK11 is required for successful autophagy. Autophagy, 2011, 7, 1295-1301.	4.3	31
46	Loss of Nuclear Factor-κB Is Tumor Promoting but Does Not Substitute for Loss of p53. Cancer Research, 2004, 64, 4415-4418.	0.4	30
47	Tumor Antigen LRRC15 Impedes Adenoviral Infection: Implications for Virus-Based Cancer Therapy. Journal of Virology, 2008, 82, 5933-5939.	1.5	25
48	Verapamil treatment induces cytoprotective autophagy by modulating cellular metabolism. FEBS Journal, 2017, 284, 1370-1387.	2.2	25
49	Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Science Advances, 2021, 7, .	4.7	24
50	Another DRAM involved in autophagy and cell death. Autophagy, 2016, 12, 603-605.	4.3	23
51	p53 directly regulates the glycosidase FUCA1 to promote chemotherapy-induced cell death. Cell Cycle, 2016, 15, 2299-2308.	1.3	23
52	PTEN deficiency permits the formation of pancreatic cancer in the absence of autophagy. Cell Death and Differentiation, 2017, 24, 1303-1304.	5.0	23
53	Transcriptional regulation of autophagy and lysosomal function by bromodomain protein BRD4. Autophagy, 2017, 13, 2006-2007.	4.3	23
54	Emerging roles of transcriptional programs in autophagy regulation. Transcription, 2018, 9, 131-136.	1.7	20

#	Article	IF	CITATIONS
55	Using enhanced-mitophagy to measure autophagic flux. Methods, 2015, 75, 105-111.	1.9	17
56	Autophagy is critically required for DNA repair by homologous recombination. Molecular and Cellular Oncology, 2016, 3, e1030538.	0.3	14
57	Growth factor signaling permits hypoxia-induced autophagy by a HIF1α-dependent, BNIP3/3L-independent transcriptional program in human cancer cells. Autophagy, 2009, 5, 1068-1069.	4.3	13
58	ATG2 and VPS13 proteins: molecular highways transporting lipids to drive membrane expansion and organelle communication. FEBS Journal, 2022, 289, 7113-7127.	2.2	13
59	Autophagy in Neurodegeneration: Can't Digest It, Spit It Out!. Trends in Cell Biology, 2018, 28, 171-173.	3.6	12
60	Oncogene-Induced Sensitization to Chemotherapy-Induced Death Requires Induction as well as Deregulation of E2F1. Cancer Research, 2010, 70, 4074-4080.	0.4	10
61	Loss of autophagy affects melanoma development in a manner dependent on PTEN status. Cell Death and Differentiation, 2021, 28, 1437-1439.	5.0	10
62	Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell Death and Differentiation, 2022, 29, 2089-2104.	5.0	10
63	p53 and senescence: A little goes a long way. Cell Cycle, 2010, 9, 4052-4051.	1.3	9
64	Autophagy Determines the Path on the TRAIL to Death. Developmental Cell, 2016, 37, 291-293.	3.1	8
65	DRAMâ€4 and DRAMâ€5 are compensatory regulators of autophagy and cell survival in nutrientâ€deprived conditions. FEBS Journal, 2022, 289, 3752-3769.	2.2	7
66	Glycan degradation promotes macroautophagy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
67	Viruses' backup plan. Nature, 2010, 466, 1054-1055.	13.7	4
68	p53 and tumor surveillance: Killer finds way to recruit assassins. Cell Cycle, 2011, 10, 3818-3818.	1.3	3
69	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	4.3	3
70	DRAMs and autophagy: a family affair. , 2022, 1, 170-174.		1
71	Autophagy, Inflammation, and Metabolism (AIM) Center in its second year. Autophagy, 2019, 15, 1829-1833.	4.3	0
72	Navigating the current landscape of scientific publishing – the <i>Molecular Oncology</i> perspective. Molecular Oncology, 2022, 16, 2297-2299.	2.1	0