## John Marius Rodenburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2902545/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy, 2009, 109, 1256-1262.                                                                                | 1.9  | 1,118     |
| 2  | A phase retrieval algorithm for shifting illumination. Applied Physics Letters, 2004, 85, 4795-4797.                                                                                                 | 3.3  | 734       |
| 3  | Hard-X-Ray Lensless Imaging of Extended Objects. Physical Review Letters, 2007, 98, 034801.                                                                                                          | 7.8  | 726       |
| 4  | Movable Aperture Lensless Transmission Microscopy: A Novel Phase Retrieval Algorithm. Physical<br>Review Letters, 2004, 93, 023903.                                                                  | 7.8  | 652       |
| 5  | Ptychography and Related Diffractive Imaging Methods. Advances in Imaging and Electron Physics, 2008, 150, 87-184.                                                                                   | 0.2  | 349       |
| 6  | Ptychographic transmission microscopy in three dimensions using a multi-slice approach. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 1606.           | 1.5  | 286       |
| 7  | Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nature Communications, 2012, 3, 730.                                                  | 12.8 | 251       |
| 8  | Translation position determination in ptychographic coherent diffraction imaging. Optics Express, 2013, 21, 13592.                                                                                   | 3.4  | 242       |
| 9  | An annealing algorithm to correct positioning errors in ptychography. Ultramicroscopy, 2012, 120, 64-72.                                                                                             | 1.9  | 234       |
| 10 | The theory of super-resolution electron microscopy via Wigner-distribution deconvolution.<br>Philosophical Transactions of the Royal Society: Physical and Engineering Sciences, 1992, 339, 521-553. | 1.0  | 208       |
| 11 | Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy, 2007, 107, 227-231.                                                                                           | 1.9  | 199       |
| 12 | Superresolution imaging via ptychography. Journal of the Optical Society of America A: Optics and<br>Image Science, and Vision, 2011, 28, 604.                                                       | 1.5  | 194       |
| 13 | Resolution beyond the 'information limit' in transmission electron microscopy. Nature, 1995, 374, 630-632.                                                                                           | 27.8 | 193       |
| 14 | Information multiplexing in ptychography. Ultramicroscopy, 2014, 138, 13-21.                                                                                                                         | 1.9  | 169       |
| 15 | Optical ptychography: a practical implementation with useful resolution. Optics Letters, 2010, 35, 2585.                                                                                             | 3.3  | 154       |
| 16 | Soft X-ray spectromicroscopy using ptychography with randomly phased illumination. Nature<br>Communications, 2013, 4, 1669.                                                                          | 12.8 | 144       |
| 17 | Experimental tests on double-resolution coherent imaging via STEM. Ultramicroscopy, 1993, 48, 304-314.                                                                                               | 1.9  | 119       |
| 18 | Sampling in x-ray ptychography. Physical Review A, 2013, 87, .                                                                                                                                       | 2.5  | 119       |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ptychographic microscope for three-dimensional imaging. Optics Express, 2014, 22, 12513.                                                                                           | 3.4 | 97        |
| 20 | Phase retrieval based on wave-front relay and modulation. Physical Review B, 2010, 82, .                                                                                           | 3.2 | 91        |
| 21 | Noise models for low counting rate coherent diffraction imaging. Optics Express, 2012, 20, 25914.                                                                                  | 3.4 | 89        |
| 22 | Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy.<br>Ultramicroscopy, 2005, 103, 153-164.                                            | 1.9 | 88        |
| 23 | Wave-front phase retrieval in transmission electron microscopy via ptychography. Physical Review B, 2010, 82, .                                                                    | 3.2 | 86        |
| 24 | Reciprocal-space up-sampling from real-space oversampling in x-ray ptychography. Physical Review A, 2014, 89, .                                                                    | 2.5 | 77        |
| 25 | Beyond the conventional information limit: the relevant coherence function. Ultramicroscopy, 1994, 54, 61-74.                                                                      | 1.9 | 75        |
| 26 | Sub-ångström transmission microscopy: A fourier transform algorithm for microdiffraction plane<br>intensity information. Ultramicroscopy, 1989, 31, 303-307.                       | 1.9 | 60        |
| 27 | Extended ptychography in the transmission electron microscope: Possibilities and limitations.<br>Ultramicroscopy, 2011, 111, 1117-1123.                                            | 1.9 | 58        |
| 28 | Two-dimensional demonstration of Wigner phase-retrieval microscopy in the STEM configuration.<br>Ultramicroscopy, 1992, 45, 371-380.                                               | 1.9 | 56        |
| 29 | Ptychography. Springer Handbooks, 2019, , 819-904.                                                                                                                                 | 0.6 | 56        |
| 30 | Ptychographic inversion via Wigner distribution deconvolution: Noise suppression and probe design.<br>Ultramicroscopy, 2014, 147, 106-113.                                         | 1.9 | 48        |
| 31 | Evolutionary determination of experimental parameters for ptychographical imaging. Journal of Applied Physics, 2011, 109, .                                                        | 2.5 | 43        |
| 32 | Breaking ambiguities in mixed state ptychography. Optics Express, 2016, 24, 9038.                                                                                                  | 3.4 | 43        |
| 33 | Manufacturing of YbAG coatings and crystallisation of the pure and Li2O-doped Yb2O3–Al2O3 system by a modified sol–gel method. Materials Chemistry and Physics, 2003, 77, 802-807. | 4.0 | 40        |
| 34 | Synthesis of Nanosize Powders and Thin Films of Yb-Doped YAG by Solâ^'Gel Methods. Chemistry of<br>Materials, 2003, 15, 3474-3480.                                                 | 6.7 | 40        |
| 35 | Separation of three-dimensional scattering effects in tilt-series Fourier ptychography.<br>Ultramicroscopy, 2015, 158, 1-7.                                                        | 1.9 | 37        |
| 36 | Electron Ptychography. I. Experimental Demonstration Beyond the Conventional Resolution Limits.<br>Acta Crystallographica Section A: Foundations and Advances, 1998, 54, 49-60.    | 0.3 | 36        |

John Marius Rodenburg

| #  | Article                                                                                                                                                                                                                                             | IF                | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 37 | Optical demonstration of a new principle of far-field microscopy. Journal Physics D: Applied Physics, 1992, 25, 147-154.                                                                                                                            | 2.8               | 35           |
| 38 | Dual wavelength optical metrology using ptychography. Journal of Optics (United Kingdom), 2013, 15, 035702.                                                                                                                                         | 2.2               | 34           |
| 39 | Investigation of intermixing in TiAlN/VN nanoscale multilayer coatings by energy-filtered TEM. Surface and Coatings Technology, 2002, 151-152, 209-213.                                                                                             | 4.8               | 33           |
| 40 | Plasma–surface interaction at sharp edges and corners during ion-assisted physical vapor deposition.<br>Part I: Edge-related effects and their influence on coating morphology and composition. Journal of<br>Applied Physics, 2003, 94, 2829-2836. | 2.5               | 31           |
| 41 | A comprehensive Monte Carlo calculation of dopant contrast in secondary-electron imaging.<br>Europhysics Letters, 2008, 82, 30006.                                                                                                                  | 2.0               | 28           |
| 42 | The phase problem, microdiffraction and wavelength-limited resolution — a discussion.<br>Ultramicroscopy, 1989, 27, 413-422.                                                                                                                        | 1.9               | 27           |
| 43 | Simultaneous reconstruction of object and aperture functions from multiple far-field intensity measurements. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10, 231.                                      | 1.5               | 27           |
| 44 | Error analysis of crystalline ptychography in the STEM mode. Ultramicroscopy, 1993, 52, 85-99.                                                                                                                                                      | 1.9               | 26           |
| 45 | Analysis and interpretation of the Seidel aberration coefficients in digital holography. Applied Optics, 2011, 50, H220.                                                                                                                            | 2.1               | 26           |
| 46 | Properties of electron microdiffraction patterns from amorphous materials. Ultramicroscopy, 1988, 25, 329-343.                                                                                                                                      | 1.9               | 25           |
| 47 | Quantitative phase contrast optimised cancerous cell differentiation via ptychography. Optics Express, 2012, 20, 9911.                                                                                                                              | 3.4               | 25           |
| 48 | Electron Ptychography. II. Theory of Three-Dimensional Propagation Effects. Acta Crystallographica<br>Section A: Foundations and Advances, 1998, 54, 61-73.                                                                                         | 0.3               | 22           |
| 49 | Influence of thick crystal effects on ptychographic image reconstruction with moveable illumination. Ultramicroscopy, 2009, 109, 1263-1275.                                                                                                         | 1.9               | 21           |
| 50 | Probe position recovery for ptychographical imaging. Journal of Physics: Conference Series, 2010, 241, 012004.                                                                                                                                      | 0.4               | 17           |
| 51 | Multiple mode x-ray ptychography using a lens and a fixed diffuser optic. Journal of Optics (United) Tj ETQq1 1 0                                                                                                                                   | .784314 rg<br>2.2 | gBT_/Overloc |
| 52 | Pixel size adjustment in coherent diffractive imaging within the Rayleigh–Sommerfeld regime. Applied Optics, 2015, 54, 1936.                                                                                                                        | 1.8               | 16           |
| 53 | Coherence requirement in digital holography. Applied Optics, 2013, 52, A326.                                                                                                                                                                        | 1.8               | 15           |
| 54 | The recording of microdiffraction patterns in scanning transmission electron microscopy. Journal of Physics E: Scientific Instruments, 1985, 18, 949-953.                                                                                           | 0.7               | 14           |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Efficient large field of view electron phase imaging using near-field electron ptychography with a diffuser. Ultramicroscopy, 2021, 231, 113257.                                                                               | 1.9  | 13        |
| 56 | Coherent X-Ray Imaging of Collagen Fibril Distributions within Intact Tendons. Biophysical Journal, 2014, 106, 459-466.                                                                                                        | 0.5  | 12        |
| 57 | Electron microscopy studies of hard coatings deposited on sharp edges by combined cathodic arc/unbalanced magnetron PVD. Surface and Coatings Technology, 2002, 151-152, 349-354.                                              | 4.8  | 11        |
| 58 | Plasma–surface interaction at sharp edges and corners during ion-assisted physical vapor deposition.<br>Part II: Enhancement of the edge-related effects at sharp corners. Journal of Applied Physics, 2003, 94,<br>2837-2844. | 2.5  | 10        |
| 59 | A method for measuring the effective source coherence in a field emission transmission electron microscope. Applied Surface Science, 1997, 111, 174-179.                                                                       | 6.1  | 8         |
| 60 | Diffraction-limited superresolution ptychography in the Rayleigh–Sommerfeld regime. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, A12.                                          | 1.5  | 8         |
| 61 | Crystal orientation effects on sputtering and depth resolution in GDOES. Surface and Interface Analysis, 2001, 31, 206-211.                                                                                                    | 1.8  | 7         |
| 62 | The role of helium ion microscopy in the characterisation of complex three-dimensional nanostructures. Ultramicroscopy, 2010, 110, 1178-1184.                                                                                  | 1.9  | 6         |
| 63 | Edge Related Effects During Ion Assisted PVD on Sharp Edges and Implications for Coating of Cutting<br>Tools. Surface Engineering, 2003, 19, 310-314.                                                                          | 2.2  | 5         |
| 64 | Internal structure of TiAlN/VN coating deposited on sharp edges by ion-assisted physical vapor<br>deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22,<br>1195-1199.                  | 2.1  | 5         |
| 65 | A comprehensive Monte Carlo calculation of dopant contrast in secondary-electron imaging.<br>Europhysics Letters, 2008, 82, 49901.                                                                                             | 2.0  | 5         |
| 66 | A new method of high resolution, quantitative phase scanning microscopy. , 2010, , .                                                                                                                                           |      | 4         |
| 67 | Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator.<br>New Journal of Physics, 2011, 13, 103022.                                                                                | 2.9  | 4         |
| 68 | Image feature delocalization in defocused probe electron ptychography. Ultramicroscopy, 2018, 187,<br>71-83.                                                                                                                   | 1.9  | 4         |
| 69 | A record-breaking microscope. Nature, 2018, 559, 334-335.                                                                                                                                                                      | 27.8 | 4         |
| 70 | Microscopy in solid state science. Microscopy Research and Technique, 1993, 24, 299-315.                                                                                                                                       | 2.2  | 3         |
| 71 | Deconvolving lens transfer functions in electron holograms. Ultramicroscopy, 1993, 52, 248-252.                                                                                                                                | 1.9  | 3         |
| 72 | A simple model of holography and some enhanced resolution methods in electron microscopy.<br>Ultramicroscopy, 2001, 87, 105-121.                                                                                               | 1.9  | 3         |

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | High resolution transmission imaging without lenses. Journal of Physics: Conference Series, 2010, 241, 012003.                                                     | 0.4 | 3         |
| 74 | Possibility of high-resolution ptychographic iterative imaging with low energy electrons: dynamical calculations. Microscopy (Oxford, England), 2015, 64, 105-110. | 1.5 | 3         |
| 75 | Ptychography: a novel phase retrieval technique, advantages and its application. , 2011, , .                                                                       |     | 2         |
| 76 | Ptychography: early history and 3D scattering effects. , 2012, , .                                                                                                 |     | 2         |
| 77 | MEASUREMENT OF AN ATOMIC POSITION COHERENCE LENGTH IN a-Ge. Journal De Physique Colloque, 1985, 46, C9-63-C9-68.                                                   | 0.2 | 1         |
| 78 | Dynamical and geometric effects in ptychographic diffractive imaging. Journal of Physics: Conference<br>Series, 2008, 126, 012035.                                 | 0.4 | 1         |
| 79 | Noise limit on practical electron ptychography. Journal of Physics: Conference Series, 2010, 241, 012065.                                                          | 0.4 | 1         |
| 80 | Resolution improvement in coherent diffractive imaging (ptychography). , 2010, , .                                                                                 |     | 1         |
| 81 | Wavefront Modulation Coherent Diffractive Imaging. , 2011, , .                                                                                                     |     | 1         |
| 82 | Electron Ptychography: Applications Of The Electron Wave Phase. Microscopy and Microanalysis, 2012, 18, 502-503.                                                   | 0.4 | 1         |
| 83 | An X-ray ptycho-tomography model of `Seeing order in ``amorphous'' materials'. Ultramicroscopy, 2019, 203, 88-94.                                                  | 1.9 | 1         |
| 84 | Multiwavelength Ptychography. , 2014, , 689-694.                                                                                                                   |     | 1         |
| 85 | A new look at the resolution limit. Micron and Microscopica Acta, 1992, 23, 213-214.                                                                               | 0.2 | Ο         |
| 86 | STEM probe characteristics at large defoci for use in ptychographical imaging. Journal of Physics:<br>Conference Series, 2008, 126, 012092.                        | 0.4 | 0         |
| 87 | An optical demonstration of ptychographical imaging for focussed-probe illumination. Journal of Physics: Conference Series, 2008, 126, 012093.                     | 0.4 | Ο         |
| 88 | Solving for the phase of STEM probes in real space. Journal of Physics: Conference Series, 2010, 241, 012064.                                                      | 0.4 | 0         |
| 89 | Ptychography: a powerful phase retrieval technique for biomedical imaging. , 2011, , .                                                                             |     | 0         |
| 90 | Ptychography applied to optical metrology. Proceedings of SPIE, 2012, , .                                                                                          | 0.8 | 0         |

| #  | Article                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Atomic resolution transmission imaging at 30keV via electron ptychography. Microscopy and Microanalysis, 2012, 18, 1024-1025. | 0.4 | 0         |