Christopher S Colwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2902236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morning light therapy in adults with Tourette's disorder. Journal of Neurology, 2022, 269, 399-410.	1.8	11
2	Circadian and ultradian rhythms in normal mice and in a mouse model of Huntington's disease. Chronobiology International, 2022, 39, 513-524.	0.9	4
3	Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice. Neuron, 2022, 110, 1173-1192.e7.	3.8	30
4	Sleep and chronotype in adults with persistent tic disorders. Journal of Clinical Psychology, 2022, 78, 1516-1539.	1.0	9
5	Oestrogen inhibits salt-dependent hypertension by suppressing GABAergic excitation in magnocellular AVP neurons. Cardiovascular Research, 2021, 117, 2263-2274.	1.8	7
6	Sexâ€dimorphic effects of biogenesis of lysosomeâ€related organelles complexâ€1 deficiency on mouse perinatal brain development. Journal of Neuroscience Research, 2021, 99, 67-89.	1.3	0
7	Excessive maternal salt intake gives rise to vasopressin-dependent salt sensitivity of blood pressure in male offspring. Journal of Molecular and Cellular Cardiology, 2021, 150, 12-22.	0.9	2
8	Abnormal sleep physiology in children with 15q11.2-13.1 duplication (Dup15q) syndrome. Molecular Autism, 2021, 12, 54.	2.6	10
9	Defining circadian disruption in neurodegenerative disorders. Journal of Clinical Investigation, 2021, 131, .	3.9	44
10	Chronic methamphetamine uncovers a circadian rhythm in multiple-unit neural activity in the dorsal striatum which is independent of the suprachiasmatic nucleus. Neurobiology of Sleep and Circadian Rhythms, 2021, 11, 100070.	1.4	5
11	Electrophysiological Approaches to Studying the Suprachiasmatic Nucleus. Methods in Molecular Biology, 2021, 2130, 303-324.	0.4	3
12	Time-restricted feeding prevents deleterious metabolic effects of circadian disruption through epigenetic control of 1² cell function. Science Advances, 2021, 7, eabg6856.	4.7	21
13	Targeted Genetic Reduction of Mutant Huntingtin Lessens Cardiac Pathology in the BACHD Mouse Model of Huntington's Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 810810.	1.1	2
14	Potential Circadian Rhythms in Oligodendrocytes? Working Together Through Time. Neurochemical Research, 2020, 45, 591-605.	1.6	20
15	Melatonin treatment of repetitive behavioral deficits in the Cntnap2 mouse model of autism spectrum disorder. Neurobiology of Disease, 2020, 145, 105064.	2.1	18
16	The circadian clock is disrupted in mice with adenine-induced tubulointerstitial nephropathy. Kidney International, 2020, 97, 728-740.	2.6	34
17	Circadian dysfunction in the Q175 model of Huntington's disease: Network analysis. Journal of Neuroscience Research, 2019, 97, 1606-1623.	1.3	14
18	Longâ€ŧerm ionic plasticity of <scp>GABA</scp> ergic signalling in the hypothalamus. Journal of Neuroendocrinology, 2019, 31, e12753.	1.2	12

#	Article	IF	CITATIONS
19	The biological clock in cluster headache: A review and hypothesis. Cephalalgia, 2019, 39, 1855-1866.	1.8	29
20	Quantitative assessments reveal improved neuroscience engagement and learning through outreach. Journal of Neuroscience Research, 2019, 97, 1153-1162.	1.3	9
21	Michael S. Levine: Research pioneer of basal ganglia function and dysfunction. A small tribute on the occasion of his 75th birthday anniversary. Journal of Neuroscience Research, 2019, 97, 1487-1490.	1.3	2
22	Neuronal PAS domain 2 (Npas2) facilitated osseointegration of titanium implant with rough surface through a neuroskeletal mechanism. Biomaterials, 2019, 192, 62-74.	5.7	26
23	Disentangling Reward Processing in Trichotillomania: â€~Wanting' and â€~Liking' Hair Pulling Have Distinc Clinical Correlates. Journal of Psychopathology and Behavioral Assessment, 2019, 41, 271-279.	t _{0.7}	8
24	Do Disruptions in the Circadian Timing System Contribute to Autonomic Dysfunction in Huntington's Disease?. Yale Journal of Biology and Medicine, 2019, 92, 291-303.	0.2	3
25	Postnatal Ontogenesis of the Islet Circadian Clock Plays a Contributory Role in Î ² -Cell Maturation Process. Diabetes, 2018, 67, 911-922.	0.3	22
26	Excitatory GABAergic Action and Increased Vasopressin Synthesis in Hypothalamic Magnocellular Neurosecretory Cells Underlie the High Plasma Level of Vasopressin in Diabetic Rats. Diabetes, 2018, 67, 486-495.	0.3	18
27	Temporal Coding of Sleep. Cell, 2018, 175, 1177-1179.	13.5	0
28	Sleep/Wake Disruption in a Mouse Model of BLOC-1 Deficiency. Frontiers in Neuroscience, 2018, 12, 759.	1.4	15
29	Changes in Sleep Problems Across Attention-Deficit/Hyperactivity Disorder Treatment: Findings from the Multimodal Treatment of Attention-Deficit/Hyperactivity Disorder Study. Journal of Child and Adolescent Psychopharmacology, 2018, 28, 690-698.	0.7	7
30	Pathophysiology in the suprachiasmatic nucleus in mouse models of Huntington's disease. Journal of Neuroscience Research, 2018, 96, 1862-1875.	1.3	18
31	Circadian-based Treatment Strategy Effective in the BACHD Mouse Model of Huntington's Disease. Journal of Biological Rhythms, 2018, 33, 535-554.	1.4	33
32	Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington's Disease. ENeuro, 2018, 5, ENEURO.0431-17.2017.	0.9	65
33	Cellular and molecular mechanisms of neurodevelopmental disorders. Journal of Neuroscience Research, 2017, 95, 1093-1096.	1.3	10
34	Membrane Currents, Gene Expression, and Circadian Clocks. Cold Spring Harbor Perspectives in Biology, 2017, 9, a027714.	2.3	57
35	Sleep functioning in adults with trichotillomania (hair-pulling disorder), excoriation (skin-picking) disorder, and a non-affected comparison sample. Journal of Obsessive-Compulsive and Related Disorders, 2017, 13, 49-57.	0.7	9
36	Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E213-E221.	1.8	4

#	Article	IF	CITATIONS
37	Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington's disease. Neurobiology of Sleep and Circadian Rhythms, 2017, 2, 39-52.	1.4	35
38	Possible use of a H3R antagonist for the management of nonmotor symptoms in the Q175 mouse model of Huntington's disease. Pharmacology Research and Perspectives, 2017, 5, e00344.	1.1	21
39	Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells. PLoS ONE, 2017, 12, e0183359.	1.1	18
40	Neurocardiovascular deficits in the Q175 mouse model of Huntington's disease. Physiological Reports, 2017, 5, e13289.	0.7	21
41	Cardiac Dysfunction in the BACHD Mouse Model of Huntington's Disease. PLoS ONE, 2016, 11, e0147269.	1.1	30
42	Circadian Rhythms: Does Burning the Midnight Oil Leave You Weak?. Current Biology, 2016, 26, R669-R671.	1.8	1
43	Histamine 1 receptor-GÎ ² Î ³ -cAMP/PKA-CFTR pathway mediates the histamine-induced resetting of the suprachiasmatic circadian clock. Molecular Brain, 2016, 9, 49.	1.3	17
44	Sex Differences in Circadian Dysfunction in the BACHD Mouse Model of Huntington's Disease. PLoS ONE, 2016, 11, e0147583.	1.1	38
45	GABAergic inhibition is weakened or converted into excitation in the oxytocin and vasopressin neurons of the lactating rat. Molecular Brain, 2015, 8, 34.	1.3	32
46	The Circadian Clock Gene <i>Period1</i> Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus. ASN Neuro, 2015, 7, 175909141561076.	1.5	16
47	Histamine resets the circadian clock in the suprachiasmatic nucleus through the H1R a _V 1.3â€RyR pathway in the mouse. European Journal of Neuroscience, 2015, 42, 2467-2477	.1.2	22
48	Age-Related Changes in the Circadian System Unmasked by Constant Conditions. ENeuro, 2015, 2, ENEURO.0064-15.2015.	0.9	86
49	The islet circadian clock: entrainment mechanisms, function and role in glucose homeostasis. Diabetes, Obesity and Metabolism, 2015, 17, 115-122.	2.2	27
50	Short Circuiting the Circadian System with a New Generation of Precision Tools. Neuron, 2015, 85, 895-898.	3.8	5
51	Reductions in synaptic proteins and selective alteration of prepulse inhibition in male C57BL/6 mice after postnatal administration of a VIP receptor (VIPR2) agonist. Psychopharmacology, 2015, 232, 2181-2189.	1.5	21
52	Sex differences in diurnal rhythms of food intake in mice caused by gonadal hormones and complement of sex chromosomes. Hormones and Behavior, 2015, 75, 55-63.	1.0	55
53	Circadian Dysfunction in Huntington's Disease. , 2015, , 321-338.		0
54	Circadian rhythm disruption in a mouse model of Rett syndrome circadian disruption in RTT. Neurobiology of Disease, 2015, 77, 155-164.	2.1	41

CHRISTOPHER S COLWELL

#	Article	IF	CITATIONS
55	Role of vasoactive intestinal peptide in the light input to the circadian system. European Journal of Neuroscience, 2015, 42, 1839-1848.	1.2	22
56	Circadian Disruption and Diet-Induced Obesity Synergize to Promote Development of β-Cell Failure and Diabetes in Male Rats. Endocrinology, 2015, 156, 4426-4436.	1.4	47
57	Misaligned feeding impairs memories. ELife, 2015, 4, .	2.8	40
58	Disrupted Reproduction, Estrous Cycle, and Circadian Rhythms in Female Mice Deficient in Vasoactive Intestinal Peptide. Journal of Biological Rhythms, 2014, 29, 355-369.	1.4	50
59	Timing Is Everything: Implications for Metabolic Consequences of Sleep Restriction. Diabetes, 2014, 63, 1826-1828.	0.3	11
60	Molluskan Ocular Pacemakers: Lessons Learned. , 2014, , 213-232.		1
61	Circadian dysfunction may be a key component of the non-motor symptoms of Parkinson's disease: Insights from a transgenic mouse model. Experimental Neurology, 2013, 243, 57-66.	2.0	54
62	How to fix a broken clock. Trends in Pharmacological Sciences, 2013, 34, 605-619.	4.0	169
63	Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus. Journal of Neurophysiology, 2013, 110, 1097-1106.	0.9	39
64	Mechanism of bilateral communication in the suprachiasmatic nucleus. European Journal of Neuroscience, 2013, 37, 964-971.	1.2	32
65	Gonadal- and Sex-Chromosome-Dependent Sex Differences in the Circadian System. Endocrinology, 2013, 154, 1501-1512.	1.4	109
66	GABAergic Excitation of Vasopressin Neurons. Circulation Research, 2013, 113, 1296-1307.	2.0	79
67	Consequences of Exposure to Light at Night on the Pancreatic Islet Circadian Clock and Function in Rats. Diabetes, 2013, 62, 3469-3478.	0.3	119
68	Circadian Dysfunction in Response to <i>in Vivo</i> Treatment with the Mitochondrial Toxin 3-Nitropropionic Acid. ASN Neuro, 2013, 6, AN20130042.	1.5	9
69	The Q175 Mouse Model of Huntington's Disease Shows Gene Dosage- and Age-Related Decline in Circadian Rhythms of Activity and Sleep. PLoS ONE, 2013, 8, e69993.	1.1	77
70	Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. Progress in Brain Research, 2012, 199, 143-162.	0.9	33
71	STAT3â€Mediated astrogliosis protects myelin development in neonatal brain injury. Annals of Neurology, 2012, 72, 750-765.	2.8	81
72	Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wildâ€type and vasoactive intestinal peptideâ€deficient mice. Journal of Physiology, 2012, 590, 6213-6226.	1.3	97

#	Article	IF	CITATIONS
73	Golli myelin basic proteins stimulate oligodendrocyte progenitor cell proliferation and differentiation in remyelinating adult mouse brain. Glia, 2012, 60, 1078-1093.	2.5	25
74	Role of vasoactive intestinal peptide in seasonal encoding by the suprachiasmatic nucleus clock. European Journal of Neuroscience, 2012, 35, 1466-1474.	1.2	48
75	Neural Circuits Underlying Circadian Oscillations in Mammals: Clocks in a Dish. Neuromethods, 2012, , 183-210.	0.2	9
76	Scheduled exercise modulates daily rhythms of behavior, physiology, and gene expression in mice. FASEB Journal, 2012, 26, 1081.1.	0.2	0
77	Sleep and circadian dysfunction in neurodegenerative disorders: insights from a mouse model of Huntington's disease. Minerva Pneumologica, 2012, 51, 93-106.	1.6	15
78	Disruption of Circadian Rhythms Accelerates Development of Diabetes through Pancreatic Beta-Cell Loss and Dysfunction. Journal of Biological Rhythms, 2011, 26, 423-433.	1.4	197
79	Circadian Rhythm and Cartilage Extracellular Matrix Genes in Osseointegration: A Genome-Wide Screening of Implant Failure by Vitamin D Deficiency. PLoS ONE, 2011, 6, e15848.	1.1	50
80	Linking neural activity and molecular oscillations in the SCN. Nature Reviews Neuroscience, 2011, 12, 553-569.	4.9	377
81	Sleepy neurons?. Nature, 2011, 472, 427-428.	13.7	0
82	Dysfunctions in circadian behavior and physiology in mouse models of Huntington's disease. Experimental Neurology, 2011, 228, 80-90.	2.0	143
83	Behavioral and Genetic Dissection of a Mouse Model for Advanced Sleep Phase Syndrome. Sleep, 2011, 34, 49-56.	0.6	20
84	Early Effects of Lipopolysaccharide-Induced Inflammation on Foetal Brain Development in Rat. ASN Neuro, 2011, 3, AN20110027.	1.5	43
85	Circadian dysfunction in a mouse model of Parkinson's disease. Experimental Neurology, 2011, 232, 66-75.	2.0	152
86	Cyclic AMP Signaling Control of Action Potential Firing Rate and Molecular Circadian Pacemaking in the Suprachiasmatic Nucleus. Journal of Biological Rhythms, 2011, 26, 210-220.	1.4	51
87	Gastrin-Releasing Peptide Modulates Fast Delayed Rectifier Potassium Current in <i>Per1</i> -Expressing SCN Neurons. Journal of Biological Rhythms, 2011, 26, 99-106.	1.4	27
88	Effects of Vasoactive Intestinal Peptide Genotype on Circadian Gene Expression in the Suprachiasmatic Nucleus and Peripheral Organs. Journal of Biological Rhythms, 2011, 26, 200-209.	1.4	45
89	Developmental Activation of the Proteolipid Protein Promoter Transgene in Neuronal and Oligodendroglial Cells of Neostriatum in Mice. Developmental Neuroscience, 2011, 33, 170-184.	1.0	2
90	Dysbindin-Containing Complexes and their Proposed Functions in Brain: From Zero to (too) Many in a Decade. ASN Neuro, 2011, 3, AN20110010.	1.5	61

#	Article	IF	CITATIONS
91	Chronic Hyperosmotic Stress Converts GABAergic Inhibition into Excitation in Vasopressin and Oxytocin Neurons in the Rat. Journal of Neuroscience, 2011, 31, 13312-13322.	1.7	83
92	Fast Delayed Rectifier Potassium Current: Critical for Input and Output of the Circadian System. Journal of Neuroscience, 2011, 31, 2746-2755.	1.7	56
93	Age-Related Decline in Circadian Output. Journal of Neuroscience, 2011, 31, 10201-10205.	1.7	315
94	Circadian regulation of cardiovascular function: a role for vasoactive intestinal peptide. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H241-H250.	1.5	32
95	Baroreceptor reflex dysfunction in the BACHD mouse model of Huntington's disease PLOS Currents, 2011, 3, RRN1266.	1.4	28
96	Circadian Regulation of A-Type Potassium Currents in the Suprachiasmatic Nucleus. Journal of Neurophysiology, 2010, 103, 632-640.	0.9	73
97	Regulation of Lâ€ŧype Ca ⁺⁺ currents and process morphology in white matter oligodendrocyte precursor cells by golliâ€myelin proteins. Clia, 2010, 58, 1292-1303.	2.5	43
98	Preventing dehydration during sleep. Nature Neuroscience, 2010, 13, 403-404.	7.1	15
99	The role of the neuropeptides PACAP and VIP in the photic regulation of gene expression in the suprachiasmatic nucleus. European Journal of Neuroscience, 2010, 31, 864-875.	1.2	42
100	Rapid Changes in the Light/Dark Cycle Disrupt Memory of Conditioned Fear in Mice. PLoS ONE, 2010, 5, e12546.	1.1	84
101	Jet lag syndrome: circadian organization, pathophysiology, and management strategies. Nature and Science of Sleep, 2010, 2, 187.	1.4	41
102	Influence of the estrous cycle on clock gene expression in reproductive tissues: Effects of fluctuating ovarian steroid hormone levels. Steroids, 2010, 75, 203-212.	0.8	88
103	Population Encoding by Circadian Clock Neurons Organizes Circadian Behavior. Journal of Neuroscience, 2009, 29, 1670-1676.	1.7	57
104	Golli Myelin Basic Proteins Regulate Oligodendroglial Progenitor Cell Migration through Voltage-Gated Ca2+ Influx. Journal of Neuroscience, 2009, 29, 6663-6676.	1.7	56
105	Voltageâ€operated Ca ²⁺ and Na ⁺ channels in the oligodendrocyte lineage. Journal of Neuroscience Research, 2009, 87, 3259-3266.	1.3	47
106	Expression of the Circadian Clock Gene <i>Period2</i> in the Hippocampus: Possible Implications for Synaptic Plasticity and Learned Behaviour. ASN Neuro, 2009, 1, AN20090020.	1.5	173
107	Role for the NR2B subunit of the N-methyl-d-aspartate receptor in mediating light input to the circadian system. European Journal of Neuroscience, 2008, 27, 1771-1779.	1.2	36
108	Select cognitive deficits in Vasoactive Intestinal Peptide deficient mice. BMC Neuroscience, 2008, 9, 63.	0.8	61

CHRISTOPHER S COLWELL

#	Article	IF	CITATIONS
109	Vasoactive Intestinal Peptide Is Critical for Circadian Regulation of Glucocorticoids. Neuroendocrinology, 2008, 88, 246-255.	1.2	61
110	Excitatory Actions of GABA in the Suprachiasmatic Nucleus. Journal of Neuroscience, 2008, 28, 5450-5459.	1.7	149
111	Disrupted Neuronal Activity Rhythms in the Suprachiasmatic Nuclei of Vasoactive Intestinal Polypeptide-Deficient Mice. Journal of Neurophysiology, 2007, 97, 2553-2558.	0.9	96
112	Exercise decreases myelin-associated glycoprotein expression in the spinal cord and positively modulates neuronal growth. Glia, 2007, 55, 966-975.	2.5	55
113	Soporific signaling: how flies sleep through the night. Nature Neuroscience, 2007, 10, 1079-1080.	7.1	0
114	Vasoactive intestinal peptide and the mammalian circadian system. General and Comparative Endocrinology, 2007, 152, 165-175.	0.8	170
115	Genetic Program of Neuronal Differentiation and Growth Induced by Specific Activation of NMDA Receptors. Neurochemical Research, 2007, 32, 363-376.	1.6	18
116	Golli Protein Negatively Regulates Store Depletion-Induced Calcium Influx in T Cells. Immunity, 2006, 24, 717-727.	6.6	76
117	Brain-derived neurotrophic factor and neurotrophin receptors modulate glutamate-induced phase shifts of the suprachiasmatic nucleus. European Journal of Neuroscience, 2006, 24, 1109-1116.	1.2	44
118	Gene expression is differentially regulated by neurotransmitters in embryonic neuronal cortical culture. Journal of Neurochemistry, 2006, 97, 35-43.	2.1	10
119	BK channels and circadian output. Nature Neuroscience, 2006, 9, 985-986.	7.1	10
120	Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neuroscience, 2006, 7, 15.	0.8	67
121	Brain-derived neurotrophic factor regulation of N-methyl-D-aspartate receptor-mediated synaptic currents in suprachiasmatic nucleus neurons. Journal of Neuroscience Research, 2006, 84, 1512-1520.	1.3	41
122	Melatonin inhibits hippocampal long-term potentiation. European Journal of Neuroscience, 2005, 22, 2231-2237.	1.2	128
123	Bridging the gap: coupling single-cell oscillators in the suprachiasmatic nucleus. Nature Neuroscience, 2005, 8, 10-12.	7.1	15
124	Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nature Neuroscience, 2005, 8, 476-483.	7.1	664
125	Fast delayed rectifier potassium current is required for circadian neural activity. Nature Neuroscience, 2005, 8, 650-656.	7.1	124
126	Circadian Regulation of Hippocampal Long-Term Potentiation. Journal of Biological Rhythms, 2005, 20, 225-236.	1.4	202

#	Article	IF	CITATIONS
127	Region-Specific Myelin Pathology in Mice Lacking the Golli Products of the Myelin Basic Protein Gene. Journal of Neuroscience, 2005, 25, 7004-7013.	1.7	46
128	Selective deficits in the circadian light response in mice lacking PACAP. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R1194-R1201.	0.9	116
129	Circadian Rhythm in Inhibitory Synaptic Transmission in the Mouse Suprachiasmatic Nucleus. Journal of Neurophysiology, 2004, 92, 311-319.	0.9	79
130	Sleep and circadian rhythms: do sleep centers talk back to the clock?. Nature Neuroscience, 2003, 6, 1005-1006.	7.1	12
131	Disrupted circadian rhythms in VIP- and PHI-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R939-R949.	0.9	333
132	Regulation of Inhibitory Synaptic Transmission by Vasoactive Intestinal Peptide (VIP) in the Mouse Suprachiasmatic Nucleus. Journal of Neurophysiology, 2003, 90, 1589-1597.	0.9	71
133	Circadian modulation of learning and memory in fear-conditioned mice. Behavioural Brain Research, 2002, 133, 95-108.	1.2	246
134	Excitatory Mechanisms in the Suprachiasmatic Nucleus: The Role of AMPA/KA Glutamate Receptors. Journal of Neurophysiology, 2002, 88, 817-828.	0.9	64
135	Inhibition of Cyclin E–Cyclin-Dependent Kinase 2 Complex Formation and Activity Is Associated with Cell Cycle Arrest and Withdrawal in Oligodendrocyte Progenitor Cells. Journal of Neuroscience, 2001, 21, 1274-1282.	1.7	62
136	NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. European Journal of Neuroscience, 2001, 13, 1420-1428.	1.2	85
137	CELLULAR COMMUNICATION AND COUPLING WITHIN THE SUPRACHIASMATIC NUCLEUS. Chronobiology International, 2001, 18, 579-600.	0.9	67
138	Rhythmic coupling among cells in the suprachiasmatic nucleus. Journal of Neurobiology, 2000, 43, 379-388.	3.7	130
139	Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. European Journal of Neuroscience, 2000, 12, 571-576.	1.2	143
140	Glutamate receptors in glia: new cells, new inputs and new functions. Trends in Pharmacological Sciences, 2000, 21, 252-258.	4.0	212
141	Serotonin Modulation of Calcium Transients in Cells in the Suprachiasmatic Nucleus. Journal of Biological Rhythms, 1999, 14, 354-363.	1.4	11
142	Metabotropic glutamate receptor modulation of excitotoxicity in the neostriatum: role of calcium channels. Brain Research, 1999, 833, 234-241.	1.1	29
143	Dopaminergic modulation of early signs of excitotoxicity in visualized rat neostriatal neurons. European Journal of Neuroscience, 1998, 10, 3491-3497.	1.2	46
144	Postnatal Development of Glutamate Receptor-Mediated Responses in the Neostriatum. Developmental Neuroscience, 1998, 20, 154-163.	1.0	70

#	Article	IF	CITATIONS
145	Dopaminergic Modulation of NMDA-Induced Whole Cell Currents in Neostriatal Neurons in Slices: Contribution of Calcium Conductances. Journal of Neurophysiology, 1998, 79, 82-94.	0.9	278
146	Time to get excited by GABA. Nature, 1997, 387, 554-555.	13.7	11
147	Histamine modulates NMDA-dependent swelling in the neostriatum. Brain Research, 1997, 766, 205-212.	1.1	9
148	Regulation of N-methyl-D-aspartate-induced toxicity in the neostriatum: a role for metabotropic glutamate receptors?. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1200-1204.	3.3	39
149	Glutamate receptor-induced toxicity in neostriatal cells. Brain Research, 1996, 724, 205-212.	1.1	32
150	Metabotropic glutamate receptor activation selectively limits excitotoxic damage in the intact neostriatum. Brain Research, 1996, 726, 223-226.	1.1	18
151	Calcium plays a central role in phase shifting the ocular circadian pacemaker of Aplysia. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994, 175, 415-23.	0.7	22
152	Metabotropic glutamate receptors modulateN-methyl-d-aspartate receptor function in neostriatal neurons. Neuroscience, 1994, 61, 497-507.	1.1	52
153	Photic induction of Fos in the hamster suprachiasmatic nucleus is inhibited by baclofen but not by diazepam or bicucullin. Neuroscience Letters, 1993, 163, 177-181.	1.0	39
154	Light-Induced Phase Shifts and Fos Expression in the Hamster Circadian System: The Effects of Anesthetics. Journal of Biological Rhythms, 1993, 8, 179-188.	1.4	29
155	NMDA as Well as Non-NMDA Receptor Antagonists Can Prevent the Phase-Shifting Effects of Light on the Circadian System of the Colden Hamster. Journal of Biological Rhythms, 1992, 7, 125-136.	1.4	159
156	Cellular Mechanisms of Entrainment. Chronobiology International, 1992, 9, 163-179.	0.9	20
157	Evidence that potassium channels mediate the effects of serotonin on the ocular circadian pacemaker of Aplysia. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 171, 651-6.	0.7	8
158	FMRFamide modulates the action of phase shifting agents on the ocular circadian pacemakers of Aplysia and Bulla. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 170, 211-5.	0.7	19
159	Photic regulation of Fos-like immunoreactivity in the suprachiasmatic nucleus of the mouse. Journal of Comparative Neurology, 1992, 324, 135-142.	0.9	127
160	NMDA receptor antagonists block the effects of light on circadian behavior in the mouse. Brain Research, 1991, 554, 105-110.	1.1	130
161	Excitatory Amino Acid Receptors may Mediate the Effects of Light on the Reproductive System of the Golden Hamster1. Biology of Reproduction, 1991, 44, 604-608.	1.2	27
162	A circadian rhythm in neural activity can be recorded from the central nervous system of the cockroach. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 166, 643-9.	0.7	50

#	Article	IF	CITATIONS
163	Light and serotonin interact in affecting the circadian system of Aplysia. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 167, 841-5.	0.7	25
164	Do NMDA receptors mediate the effects of light on circadian behavior?. Brain Research, 1990, 523, 117-120.	1.1	135
165	The electroretinogram of the cockroach Leucophaea maderae. Comparative Biochemistry and Physiology A, Comparative Physiology, 1989, 92, 117-123.	0.7	31
166	Circadian Rhythms in the Electroretinogram of the Cockroach. Journal of Biological Rhythms, 1986, 1, 25-37.	1.4	64