
Andrew B Singleton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/290190/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 2011, 72, 257-268.	3.8	3,833
2	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
3	Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genetics, 2009, 41, 1308-1312.	9.4	1,745
4	Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genetics, 2014, 46, 989-993.	9.4	1,685
5	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	4.9	1,414
6	The Parkinson Progression Marker Initiative (PPMI). Progress in Neurobiology, 2011, 95, 629-635.	2.8	1,278
7	A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nature Genetics, 2017, 49, 1511-1516.	9.4	944
8	Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain. PLoS Genetics, 2010, 6, e1000952.	1.5	722
9	The genetic architecture of Parkinson's disease. Lancet Neurology, The, 2020, 19, 170-178.	4.9	620
10	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
11	Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database. PLoS Genetics, 2012, 8, e1002548.	1.5	495
12	Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neuroscience, 2014, 17, 664-666.	7.1	398
13	Targeting α-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurology, The, 2015, 14, 855-866.	4.9	393
14	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	2.6	333
15	The Parkinson's progression markers initiative (PPMI) – establishing a PD biomarker cohort. Annals of Clinical and Translational Neurology, 2018, 5, 1460-1477.	1.7	330
16	Parkinson's disease age at onset genomeâ€wide association study: Defining heritability, genetic loci, and αâ€synuclein mechanisms. Movement Disorders, 2019, 34, 866-875.	2.2	258
17	Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiology of Disease, 2020, 137, 104782.	2.1	241
18	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	9.4	223

ANDREW B SINGLETON

#	Article	IF	CITATIONS
19	DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurology, The, 2008, 7, 207-215.	4.9	202
20	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	9.4	198
21	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	4.9	195
22	CSF biomarkers associated with disease heterogeneity in early Parkinson's disease: the Parkinson's Progression Markers Initiative study. Acta Neuropathologica, 2016, 131, 935-949.	3.9	190
23	Diagnosis of Parkinson's disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurology, The, 2015, 14, 1002-1009.	4.9	179
24	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2012, 21, 4996-5009.	1.4	176
25	A Genome-Wide Association Study of Depressive Symptoms. Biological Psychiatry, 2013, 73, 667-678.	0.7	149
26	Genetic modifiers of risk and age at onset in GBA associated Parkinson's disease and Lewy body dementia. Brain, 2020, 143, 234-248.	3.7	149
27	A genome-wide association study in multiple system atrophy. Neurology, 2016, 87, 1591-1598.	1.5	139
28	Longitudinal Change of Clinical and Biological Measures in Early Parkinson's Disease: Parkinson's Progression Markers Initiative Cohort. Movement Disorders, 2018, 33, 771-782.	2.2	136
29	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	2.8	118
30	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	1.5	108
31	Validation of Serum Neurofilament Light Chain as a Biomarker of Parkinson's Disease Progression. Movement Disorders, 2020, 35, 1999-2008.	2.2	104
32	Genomeâ€Wide Association Studies of Cognitive and Motor Progression in Parkinson's Disease. Movement Disorders, 2021, 36, 424-433.	2.2	101
33	NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiology of Aging, 2015, 36, 1605.e7-1605.e12.	1.5	96
34	Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson's Progression Markers Initiative (PPMI): a cross-sectional study. Lancet Neurology, The, 2020, 19, 71-80.	4.9	94
35	Parkinson's disease and dementia with Lewy bodies: a difference in dose?. Lancet, The, 2004, 364, 1105-1107.	6.3	80
36	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.	1.5	78

ANDREW B SINGLETON

#	Article	IF	CITATIONS
37	Analysis of an early-onset Parkinson's disease cohort for DJ-1 mutations. Movement Disorders, 2004, 19, 796-800.	2.2	71
38	Genome-Wide Analysis of the Heritability of Amyotrophic Lateral Sclerosis. JAMA Neurology, 2014, 71, 1123.	4.5	69
39	The Parkinson's Disease <scp>Genomeâ€Wide</scp> Association Study Locus Browser. Movement Disorders, 2020, 35, 2056-2067.	2.2	68
40	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	2.2	66
41	Accelerating Medicines Partnership: Parkinson's Disease. Genetic Resource. Movement Disorders, 2021, 36, 1795-1804.	2.2	60
42	Parkinson's disease determinants, prediction and gene–environment interactions in the UK Biobank. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1046-1054.	0.9	59
43	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	2.2	57
44	Functionalization of the TMEM175 p.M393T variant as a risk factor for Parkinson disease. Human Molecular Genetics, 2019, 28, 3244-3254.	1.4	56
45	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron, 2021, 109, 448-460.e4.	3.8	56
46	Altered α-synuclein homeostasis causing Parkinson's disease: the potential roles of dardarin. Trends in Neurosciences, 2005, 28, 416-421.	4.2	50
47	A comprehensive analysis of <i>SNCA</i> â€related genetic risk in sporadic parkinson disease. Annals of Neurology, 2018, 84, 117-129.	2.8	50
48	The Parkinson's Disease Mendelian Randomization Research Portal. Movement Disorders, 2019, 34, 1864-1872.	2.2	50
49	LRRK2 mediates microglial neurotoxicity via NFATc2 in rodent models of synucleinopathies. Science Translational Medicine, 2020, 12, .	5.8	49
50	Clinical and Dopamine Transporter Imaging Characteristics of Leucine Rich Repeat Kinase 2 (LRRK2) and Glucosylceramidase Beta (GBA) Parkinson's Disease Participants in the Parkinson's Progression Markers Initiative: A Crossâ€6ectional Study. Movement Disorders, 2020, 35, 833-844.	2.2	48
51	Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging. Scientific Reports, 2017, 7, 16890.	1.6	47
52	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population‧pecific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	2.2	47
53	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	4.5	46
54	Multi-modality machine learning predicting Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 35.	2.5	44

ANDREW B SINGLETON

#	Article	IF	CITATIONS
55	Fineâ€Mapping of <i>SNCA</i> in Rapid Eye Movement Sleep Behavior Disorder and Overt Synucleinopathies. Annals of Neurology, 2020, 87, 584-598.	2.8	39
56	Genetic variability and potential effects on clinical trial outcomes: perspectives in Parkinson's disease. Journal of Medical Genetics, 2020, 57, 331-338.	1.5	36
57	Assessing the relationship between monoallelic <i>PRKN</i> mutations and Parkinson's risk. Human Molecular Genetics, 2021, 30, 78-86.	1.4	36
58	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	2.8	29
59	Head injury, potential interaction with genes, and risk for Parkinson's disease. Parkinsonism and Related Disorders, 2015, 21, 292-296.	1.1	27
60	Heterozygous <i>PRKN</i> mutations are common but do not increase the risk of Parkinson's disease. Brain, 2022, 145, 2077-2091.	3.7	26
61	Genomeâ€wide association study of neocortical Lewyâ€related pathology. Annals of Clinical and Translational Neurology, 2015, 2, 920-931.	1.7	25
62	Mendelian Randomisation Study of Smoking, Alcohol, and Coffee Drinking in Relation to Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 267-282.	1.5	21
63	Dairy Intake and Parkinson's Disease: A Mendelian Randomization Study. Movement Disorders, 2022, 37, 857-864.	2.2	15
64	The Parkinson's Disease <scp>DNA</scp> Variant Browser. Movement Disorders, 2021, 36, 1250-1258.	2.2	11
65	Genome-wide estimates of heritability and genetic correlations in essential tremor. Parkinsonism and Related Disorders, 2019, 64, 262-267.	1.1	10
66	Polygenic Resilience Modulates the Penetrance of Parkinson Disease Genetic Risk Factors. Annals of Neurology, 2022, 92, 270-278.	2.8	10
67	Juvenile onset Parkinsonism with "pure nigral―degeneration and POLG1 mutation. Parkinsonism and Related Disorders, 2016, 30, 83-85.	1.1	9
68	A population scale analysis of rare SNCA variation in the UK Biobank. Neurobiology of Disease, 2021, 148, 105182.	2.1	5
69	Parkinson disease and clathrin coat dynamics at synapses, why not?. Movement Disorders, 2017, 32, 1163-1163.	2.2	4
70	Assessment of Genetic Association Between Parkinson Disease and Bipolar Disorder. JAMA Neurology, 2020, 77, 1034.	4.5	4
71	X-linked recessive dystonia parkinsonism (XDP; Lubag; DYT3). Advances in Neurology, 2004, 94, 139-42.	0.8	3
72	Susceptibility genes in movement disorders. Movement Disorders, 2008, 23, 927-934.	2.2	2

#	Article	IF	CITATIONS
73	Make dopamine neurons great again: An exciting new therapeutic option in parkinson's disease. Movement Disorders, 2017, 32, 1164-1164.	2.2	2
74	Leucine rich repeat kinase knockout (<i>LRRK</i> KO) mouse model: Linking pathological hallmarks of inherited and sporadic Parkinson's disease. Movement Disorders, 2018, 33, 72-72.	2.2	2
75	Familiality in simple and complex disease. Clinical Autonomic Research, 2003, 13, 88-90.	1.4	1