
Sooyeon Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/290174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Science Advances, 2022, 8, eabm4322.	4.7	49
2	Atomically dispersed single Ni site catalysts for high-efficiency CO ₂ electroreduction at industrial-level current densities. Energy and Environmental Science, 2022, 15, 2108-2119.	15.6	99
3	Passive Oxide Film Growth Observed On the Atomic Scale. Advanced Materials Interfaces, 2022, 9, .	1.9	4
4	High-Platinum-Content Catalysts on Atomically Dispersed and Nitrogen Coordinated Single Manganese Site Carbons for Heavy-Duty Fuel Cells. Journal of the Electrochemical Society, 2022, 169, 034510.	1.3	10
5	Composition-dependent ordering transformations in Pt–Fe nanoalloys. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117899119.	3.3	10
6	Rapid Atomic Ordering Transformation toward Intermetallic Nanoparticles. Nano Letters, 2022, 22, 255-262.	4.5	12
7	Electrochemical CO ₂ Reduction Reaction over Cu Nanoparticles with Tunable Activity and Selectivity Mediated by Functional Groups in Polymeric Binder. Jacs Au, 2022, 2, 214-222.	3.6	29
8	Molybdenum Carbide Electrocatalyst In Situ Embedded in Porous Nitrogenâ€Rich Carbon Nanotubes Promotes Rapid Kinetics in Sodiumâ€Metal–Sulfur Batteries. Advanced Materials, 2022, 34, e2106572.	11.1	33
9	Atomically Dispersed Dualâ€Metal Site Catalysts for Enhanced CO ₂ Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	83
10	Atomically Dispersed Dualâ€Metal Site Catalysts for Enhanced CO ₂ Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie, 2022, 134, .	1.6	6
11	Depth-Dependent Understanding of Cathode Electrolyte Interphase (CEI) on the Layered Li-Ion Cathodes Operated at Extreme High Temperature. Chemistry of Materials, 2022, 34, 4587-4601.	3.2	17
12	Unraveling Thermodynamic and Kinetic Contributions to the Stability of Doped Nanocrystalline Alloys using Nanometallic Multilayers. Advanced Materials, 2022, 34, e2200354.	11.1	2
13	Porosity Development at Li-Rich Layered Cathodes in All-Solid-State Battery during <i>In Situ</i> Delithiation. Nano Letters, 2022, 22, 4905-4911.	4.5	10
14	Engineering Atomically Dispersed FeN ₄ Active Sites for CO ₂ Electroreduction. Angewandte Chemie, 2021, 133, 1035-1045.	1.6	39
15	Engineering Atomically Dispersed FeN ₄ Active Sites for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 1022-1032.	7.2	121
16	On the irreversible sodiation of tin disulfide. Nano Energy, 2021, 79, 105458.	8.2	14
17	Highâ€Entropy Metal Sulfide Nanoparticles Promise Highâ€Performance Oxygen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2002887.	10.2	226
18	Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nature Catalysis, 2021, 4, 36-45.	16.1	189

#	Article	IF	CITATIONS
19	Atomically dispersed single iron sites for promoting Pt and Pt ₃ Co fuel cell catalysts: performance and durability improvements. Energy and Environmental Science, 2021, 14, 4948-4960.	15.6	168
20	Non-equilibrium insertion of lithium ions into graphite. Journal of Materials Chemistry A, 2021, 9, 12080-12086.	5.2	15
21	Surfactant Removal for Colloidal Nanocrystal Catalysts Mediated by N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2021, 143, 2644-2648.	6.6	25
22	Real Time Observation of Lithium Insertion into Pre-Cycled Conversion-Type Materials. Nanomaterials, 2021, 11, 728.	1.9	3
23	Promoting Atomically Dispersed MnN ₄ Sites <i>via</i> Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS Nano, 2021, 15, 6886-6899.	7.3	119
24	Origin of anomalous high-rate Na-ion electrochemistry in layered bismuth telluride anodes. Matter, 2021, 4, 1335-1351.	5.0	26
25	Layered-rocksalt intergrown cathode for high-capacity zero-strain battery operation. Nature Communications, 2021, 12, 2348.	5.8	43
26	Asymmetric Reaction Pathways of Conversion-Type Electrodes for Lithium-Ion Batteries. Chemistry of Materials, 2021, 33, 3515-3523.	3.2	5
27	Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2100210.	10.2	63
28	Compressive Strain Reduces the Hydrogen Evolution and Oxidation Reaction Activity of Platinum in Alkaline Solution. ACS Catalysis, 2021, 11, 8165-8173.	5.5	37
29	Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts. ACS Catalysis, 2021, 11, 10084-10094.	5.5	4
30	Microscopic relaxation channels in materials for superconducting qubits. Communications Materials, 2021, 2, .	2.9	31
31	Mixed Cationic and Anionic Redox in Ni and Co Free Chalcogen-Based Cathode Chemistry for Li-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 15732-15744.	6.6	19
32	Colloidal synthesis and charge carrier dynamics of Cs4Cd1â^'Cu Sb2Cl12 (0Â≤ ≤) layered double perovskite nanocrystals. Matter, 2021, 4, 2936-2952.	5.0	20
33	High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy and Environmental Science, 2021, 14, 1449-1460.	15.6	100
34	Emergent flat band electronic structure in a VSe2/Bi2Se3 heterostructure. Communications Materials, 2021, 2, .	2.9	15
35	Selenium infiltrated hierarchical hollow carbon spheres display rapid kinetics and extended cycling as lithium metal battery (LMB) cathodes. Journal of Materials Chemistry A, 2021, 9, 18582-18593.	5.2	5
36	Investigation of the NO reduction by CO reaction over oxidized and reduced NiO _{<i>x</i>} /CeO ₂ catalysts. Catalysis Science and Technology, 2021, 11, 7850-7865.	2.1	13

#	Article	IF	CITATIONS
37	Atomic Structure Evolution of Pt–Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. Advanced Materials, 2021, 33, e2106371.	11.1	62
38	Chalcogen-Based Anion Redox Cathode Chemistry for Li-Ion Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 1912-1912.	0.0	0
39	Layered-Rocksalt Intergrown Cathode for High-Capacity Zero-Strain Battery Operation. ECS Meeting Abstracts, 2021, MA2021-02, 193-193.	0.0	0
40	Immobilization of "Capping Arene―Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. ACS Catalysis, 2021, 11, 15068-15082.	5.5	8
41	Isotopic effect on electrochemical CO ₂ reduction activity and selectivity in H ₂ O- and D ₂ O-based electrolytes over palladium. Chemical Communications, 2020, 56, 106-108.	2.2	17
42	Using <i>in situ</i> and operando methods to characterize phase changes in charged lithium nickel cobalt aluminum oxide cathode materials. Journal Physics D: Applied Physics, 2020, 53, 113002.	1.3	12
43	Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy, 2020, 68, 104384.	8.2	106
44	Electrochemical Conversion of CO 2 to Syngas with Controllable CO/H 2 Ratios over Co and Ni Singleâ€Atom Catalysts. Angewandte Chemie, 2020, 132, 3057-3061.	1.6	22
45	Site-Specific Sodiation Mechanisms of Selenium in Microporous Carbon Host. Nano Letters, 2020, 20, 918-928.	4.5	30
46	Electrochemical Conversion of CO ₂ to Syngas with Controllable CO/H ₂ Ratios over Co and Ni Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2020, 59, 3033-3037.	7.2	203
47	In Situ Transmission Electron Microscopy on Energyâ€Related Catalysis. Advanced Energy Materials, 2020, 10, 1902105.	10.2	78
48	Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes. ACS Energy Letters, 2020, 5, 3535-3543.	8.8	21
49	Synthesis of luminescent core/shell α-Zn ₃ P ₂ /ZnS quantum dots. Nanoscale, 2020, 12, 20952-20964.	2.8	2
50	Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and Highâ€Power PGMâ€Free Cathodes in Fuel Cells. Advanced Materials, 2020, 32, e2003577.	11.1	262
51	Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte Chemie, 2020, 132, 22276-22283.	1.6	15
52	Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy, 2020, 78, 105107.	8.2	88
53	Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte Chemie - International Edition, 2020, 59, 22092-22099.	7.2	75
54	Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 2020, 279, 119400.	10.8	94

#	Article	IF	CITATIONS
55	Deciphering Dynamic Structural and Mechanistic Complexity in Cu/CeO ₂ /ZSM-5 Catalysts for the Reverse Water-Gas Shift Reaction. ACS Catalysis, 2020, 10, 10216-10228.	5.5	39
56	Multimodal Analysis of Reaction Pathways of Cathode Materials for Lithium Ion Batteries. Microscopy and Microanalysis, 2020, 26, 906-908.	0.2	0
57	Synthesis and Characterization of Anion-Exchange Membranes Using Semicrystalline Triblock Copolymers in Ordered and Disordered States. Macromolecules, 2020, 53, 8548-8561.	2.2	9
58	Direct Identification of Mixed-Metal Centers in Metal–Organic Frameworks: Cu ₃ (BTC) ₂ Transmetalated with Rh ²⁺ Ions. Journal of Physical Chemistry Letters, 2020, 11, 8138-8144.	2.1	16
59	Capture and Decomposition of the Nerve Agent Simulant, DMCP, Using the Zeolitic Imidazolate Framework (ZIF-8). ACS Applied Materials & Interfaces, 2020, 12, 58326-58338.	4.0	22
60	Tuning the Anode–Electrolyte Interface Chemistry for Garnetâ€Based Solidâ€State Li Metal Batteries. Advanced Materials, 2020, 32, e2000030.	11.1	156
61	A Highly Efficient Allâ€Solidâ€State Lithium/Electrolyte Interface Induced by an Energetic Reaction. Angewandte Chemie - International Edition, 2020, 59, 14003-14008.	7.2	70
62	A Highly Efficient Allâ€Solidâ€State Lithium/Electrolyte Interface Induced by an Energetic Reaction. Angewandte Chemie, 2020, 132, 14107-14112.	1.6	4
63	Hierarchical Polyelemental Nanoparticles as Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions. Advanced Energy Materials, 2020, 10, 2001119.	10.2	39
64	Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries. Energy Storage Materials, 2020, 30, 98-103.	9.5	109
65	Lead-Free Cs ₄ CuSb ₂ Cl ₁₂ Layered Double Perovskite Nanocrystals. Journal of the American Chemical Society, 2020, 142, 11927-11936.	6.6	131
66	AgPd nanoparticles for electrocatalytic CO ₂ reduction: bimetallic composition-dependent ligand and ensemble effects. Nanoscale, 2020, 12, 14068-14075.	2.8	36
67	Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy, 2020, 72, 104686.	8.2	56
68	Supported and coordinated single metal site electrocatalysts. Materials Today, 2020, 37, 93-111.	8.3	71
69	Revealing Reaction Pathways of Collective Substituted Iron Fluoride Electrode for Lithium Ion Batteries. ACS Nano, 2020, 14, 10276-10283.	7.3	14
70	Accelerating CO ₂ Electroreduction to CO Over Pd Singleâ€Atom Catalyst. Advanced Functional Materials, 2020, 30, 2000407.	7.8	173
71	Overcoming immiscibility toward bimetallic catalyst library. Science Advances, 2020, 6, eaaz6844.	4.7	105
72	Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nature Energy, 2020, 5, 386-397.	19.8	621

#	Article	IF	CITATIONS
73	Transition Metal Nitrides as Promising Catalyst Supports for Tuning CO/H 2 Syngas Production from Electrochemical CO 2 Reduction. Angewandte Chemie, 2020, 132, 11441-11444.	1.6	11
74	Transition Metal Nitrides as Promising Catalyst Supports for Tuning CO/H ₂ Syngas Production from Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 11345-11348.	7.2	100
75	Innentitelbild: Electrochemical Conversion of CO ₂ to Syngas with Controllable CO/H ₂ Ratios over Co and Ni Singleâ€Atom Catalysts (Angew. Chem. 8/2020). Angewandte Chemie, 2020, 132, 2938-2938.	1.6	0
76	Using In-Situ Methods to Characterize Phase Changes in Charged Lithium Nickel Cobalt Aluminum Oxide Cathode Materials. Microscopy and Microanalysis, 2019, 25, 2030-2031.	0.2	2
77	<i>In Situ</i> Electron Microscopy Investigation of Sodiation of Titanium Disulfide Nanoflakes. ACS Nano, 2019, 13, 9421-9430.	7.3	30
78	3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy and Environmental Science, 2019, 12, 2830-2841.	15.6	219
79	Expanded lithiation of titanium disulfide: Reaction kinetics of multi-step conversion reaction. Nano Energy, 2019, 63, 103882.	8.2	21
80	Unraveling the Voltage Decay Phenomenon in Liâ€Rich Layered Oxide Cathode of No Oxygen Activity. Advanced Energy Materials, 2019, 9, 1902258.	10.2	51
81	PdMo bimetallene for oxygen reduction catalysis. Nature, 2019, 574, 81-85.	13.7	935
82	Highly active atomically dispersed CoN ₄ fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy and Environmental Science, 2019, 12, 250-260.	15.6	691
83	Phase evolution of conversion-type electrode for lithium ion batteries. Nature Communications, 2019, 10, 2224.	5.8	99
84	Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13389-13399.	5.2	27
85	Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis. Joule, 2019, 3, 956-991.	11.7	197
86	Atomically Dispersed Iron Cathode Catalysts Derived from Binary Ligand-Based Zeolitic Imidazolate Frameworks with Enhanced Stability for PEM Fuel Cells. Journal of the Electrochemical Society, 2019, 166, F3116-F3122.	1.3	31
87	Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. Applied Catalysis B: Environmental, 2019, 243, 195-203.	10.8	170
88	Elucidating anionic oxygen activity in lithium-rich layered oxides. Nature Communications, 2018, 9, 947.	5.8	241
89	Nanoceria-Supported Single-Atom Platinum Catalysts for Direct Methane Conversion. ACS Catalysis, 2018, 8, 4044-4048.	5.5	214
90	Multistep Lithiation of Tin Sulfide: An Investigation Using <i>in Situ</i> Electron Microscopy. ACS Nano, 2018, 12, 3638-3645.	7.3	50

6

#	Article	IF	CITATIONS
91	Interpenetrating Triphase Cobaltâ€Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Long‣asting Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1702900.	10.2	242
92	Isolated Ni single atoms in graphene nanosheets for high-performance CO ₂ reduction. Energy and Environmental Science, 2018, 11, 893-903.	15.6	811
93	Coupled s-p-d Exchange in Facet-Controlled Pd3Pb Tripods Enhances Oxygen Reduction Catalysis. CheM, 2018, 4, 359-371.	5.8	100
94	Nitrogenâ€Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced Materials, 2018, 30, 1706758.	11.1	788
95	Panoramic Visualization of Lithiation of Copper Sulfide by In Situ STEM. Microscopy and Microanalysis, 2018, 24, 1498-1499.	0.2	1
96	In-situ Investigation of Multi-Step Lithiation of Tin Sulfide. Microscopy and Microanalysis, 2018, 24, 1864-1865.	0.2	0
97	Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 2018, 1, 935-945.	16.1	1,075
98	Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts. Nanoscale, 2018, 10, 17318-17326.	2.8	45
99	Reversible Flat to Rippling Phase Transition in Fe Containing Layered Battery Electrode Materials. Advanced Functional Materials, 2018, 28, 1803896.	7.8	18
100	Ordered Pt ₃ Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction. Nano Letters, 2018, 18, 4163-4171.	4.5	304
101	Zn-air Batteries: Interpenetrating Triphase Cobalt-Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Long-Lasting Rechargeable Zn-Air Batteries (Adv. Energy Mater. 15/2018). Advanced Energy Materials, 2018, 8, 1870068.	10.2	13
102	High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nature Communications, 2018, 9, 2324.	5.8	136
103	Avoiding Fracture in a Conversion Battery Material through Reaction with Larger Ions. Joule, 2018, 2, 1783-1799.	11.7	65
104	Reversible Flat to Rippling Phase Transition in Fe Containing Layered Battery Electrode Materials. Advanced Functional Materials, 2018, 28, .	7.8	0
105	Investigating the Kinetic Effect on Structural Evolution of Li _{<i>x</i>} Ni _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Materials during the Initial Charge/Discharge. Chemistry of Materials, 2017, 29, 2708-2716.	3.2	39
106	Investigation of Thermal Stability of P2–Na _{<i>x</i>} CoO ₂ Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy. ACS Applied Materials & Interfaces, 2017, 9, 18883-18888.	4.0	48
107	Strain Coupling of Conversionâ€ŧype Fe ₃ O ₄ Thin Films for Lithium Ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 7813-7816.	7.2	59
108	Strain Coupling of Conversionâ€ŧype Fe 3 O 4 Thin Films for Lithium Ion Batteries. Angewandte Chemie, 2017, 129, 7921-7924.	1.6	2

#	Article	IF	CITATIONS
109	Hard–Soft Composite Carbon as a Longâ€Cycling and Highâ€Rate Anode for Potassiumâ€lon Batteries. Advanced Functional Materials, 2017, 27, 1700324.	7.8	471
110	Effects of proton irradiation on structural and electrochemical charge storage properties of TiO ₂ nanotube electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 11815-11824.	5.2	45
111	Effect of Carbon and Binder on High Sulfur Loading Electrode for Li-S Battery Technology. Electrochimica Acta, 2017, 235, 399-408.	2.6	32
112	Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon. ACS Catalysis, 2017, 7, 8386-8393.	5.5	131
113	Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 2017, 139, 14143-14149.	6.6	1,215
114	3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Applied Catalysis B: Environmental, 2017, 219, 629-639.	10.8	111
115	Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes. Nano Letters, 2017, 17, 5726-5733.	4.5	67
116	Structural Evolution of Li _{<i>x</i>} Ni _{<i>y</i>} Mn _{<i>z</i>} Co _{1-y-z} O ₂ Cathode Materials during High-Rate Charge and Discharge. Journal of Physical Chemistry Letters, 2017, 8, 5758-5763.	2.1	27
117	Morphology Control of Carbon-Free Spinel NiCo ₂ O ₄ Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media. ACS Applied Materials & amp; Interfaces, 2017, 9, 44567-44578.	4.0	161
118	Determination of the mechanism and extent of surface degradation in Ni-based cathode materials after repeated electrochemical cycling. APL Materials, 2016, 4, .	2.2	24
119	Tuning the Activity of Oxygen in LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Battery Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 27762-27771.	4.0	58
120	Kinetic Phase Evolution of Spinel Cobalt Oxide during Lithiation. ACS Nano, 2016, 10, 9577-9585.	7.3	54
121	Degradation of Co3O4 anode in rechargeable lithium-ion battery: a semi-empirical approach to the effect of conducting material content. Journal of Solid State Electrochemistry, 2016, 20, 345-352.	1.2	6
122	Using Real-Time Electron Microscopy To Explore the Effects of Transition-Metal Composition on the Local Thermal Stability in Charged Li _{<i>x</i>} Ni _{<i>y</i>} Mn _{<i>z</i>} Co _{1â€"<i>y</i>â€"<i>z</i>} C Cathode Materials. Chemistry of Materials, 2015, 27, 3927-3935.)< ^{3.2}) _{2<!--</td--><td>103 sub></td>}	103 sub>
123	Investigating the Reversibility of Structural Modifications of Li _{<i>x</i>} Ni _{<i>y</i>} Mn _{<i>z</i>} Co _{1â€"<i>y</i>á€"<i>z</i>} C Cathode Materials during Initial Charge/Discharge, at Multiple Length Scales. Chemistry of Materials, 2015. 27. 6044-6052.) _{2<,}	subs 80
124	Microstructural Characteristics of Tin Oxide-Based Thin Films on (0001) Al ₂ O ₃ Substrates: Effects of Substrate Temperature and RF Power During Co-Sputtering. Journal of Nanoscience and Nanotechnology, 2014, 14, 8908-8914.	0.9	4
125	Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries. Applied Physics Letters, 2014, 105, .	1.5	37
126	Investigation of Changes in the Surface Structure of Li _{<i>x</i>} Ni _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Materials Induced by the Initial Charge. Chemistry of Materials, 2014, 26, 1084-1092.	3.2	308

#	Article	IF	CITATIONS
127	Investigating Local Degradation and Thermal Stability of Charged Nickel-Based Cathode Materials through Real-Time Electron Microscopy. ACS Applied Materials & Interfaces, 2014, 6, 15140-15147.	4.0	90
128	Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged Li _{<i>x</i>} Ni _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Materials. Chemistry of Materials, 2013, 25, 337-351.	3.2	317
129	p-Channel Oxide Thin Film Transistors Using Solution-Processed Copper Oxide. ACS Applied Materials & Interfaces, 2013, 5, 2417-2421.	4.0	112
130	Effects of Al Concentration on Microstructural Characteristics and Electrical Properties of Al-Doped ZnO Thin Films on Si Substrates by Atomic Layer Deposition. Journal of Nanoscience and Nanotechnology, 2012, 12, 5598-5603.	0.9	6
131	Irregular Electrical Conduction Types in Tin Oxide Thin Films Induced by Nanoscale Phase Separation. Journal of the American Ceramic Society, 2012, 95, 324-327.	1.9	38
132	A Facile Method for Morphological Control of MgZnO Nanostructures on GaAs Substrates and Their Optical Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 7327-7330.	0.9	3
133	Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors. Thin Solid Films, 2011, 519, 5146-5149.	0.8	115
134	Role of the crystallinity of ZnO films in the electrical properties of bottom-gate thin film transistors. Thin Solid Films, 2011, 519, 6801-6805.	0.8	15
135	Influence of active layer thickness and annealing in zinc oxide TFT grown by atomic layer deposition. Surface and Interface Analysis, 2010, 42, 955-958.	0.8	19
136	Manipulating Interfacial Dissolution–Redeposition Dynamics to Resynthesize Electrode Surface Chemistry. ACS Energy Letters, 0, , 2588-2594.	8.8	1