Huimin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2901571/publications.pdf Version: 2024-02-01

HUIMIN YANG

#	Article	IF	CITATIONS
1	Enhanced water dissociation performance of graphitic-C3N4 assembled with ZnCr-layered double hydroxide. Chemical Engineering Journal, 2018, 337, 560-566.	12.7	38
2	Performance of sodium bromate as cathodic electron acceptor in microbial fuel cell. Bioresource Technology, 2016, 202, 220-225.	9.6	28
3	Synthesis and Characterization of (Cu, S) Coâ€doped SnO ₂ for Electrocatalytic Reduction of CO ₂ to Formate at Low Overpotential. ChemElectroChem, 2018, 5, 1330-1335.	3.4	28
4	Bi2S3 quantum dots in situ grown on MoS2 nanoflowers: An efficient electron-rich interface for photoelectrochemical N2 reduction. Journal of Colloid and Interface Science, 2022, 611, 294-305.	9.4	26
5	Poly(3,4-ethylenedioxythiophene) Based Solid-State Polymer Supercapacitor with Ionic Liquid Gel Polymer Electrolyte. Polymers, 2020, 12, 297.	4.5	24
6	A photocatalytic graphene quantum dots–Cu ₂ O/bipolar membrane as a separator for water splitting. New Journal of Chemistry, 2016, 40, 3075-3079.	2.8	18
7	A novel photoelectrocatalytic approach for water splitting by an I-BiOCl/bipolar membrane sandwich structure. Green Chemistry, 2015, 17, 199-203.	9.0	17
8	Defect-engineering of tin oxide via (Cu, N) co-doping for electrocatalytic and photocatalytic CO2 reduction into formate. Chemical Engineering Science, 2020, 227, 115947.	3.8	16
9	A novel method for evaluating the photoelectrocatalytic performance of reduced graphene oxide/protonated g-C 3 N 4 composites. Materials Letters, 2016, 176, 209-212.	2.6	15
10	Excellent performance of the photoelectrocatalytic CO2 reduction to formate by Bi2S3/ZIF-8 composite. Applied Surface Science, 2022, 579, 152206.	6.1	12
11	Enhanced photoelectric performance of (2Al, S) co-doped rutile SnO ₂ . RSC Advances, 2017, 7, 42940-42945.	3.6	11
12	Effects of Bi and S co-doping on the enhanced photoelectric performance of ZnO: Theoretical and experimental investigations. Journal of Alloys and Compounds, 2021, 872, 159648.	5.5	10
13	Surface Modification of Tin Dioxide via (Bi, S) Coâ€Doping for Photoelectrocatalytic Reduction of CO ₂ to Formate. ChemElectroChem, 2019, 6, 3782-3790.	3.4	9
14	Insights into the Photoassisted Electrocatalytic Reduction of CO ₂ over a Twoâ€dimensional MoS ₂ Nanostructure Loaded on SnO ₂ Nanoparticles. ChemElectroChem, 2019, 6, 3077-3084.	3.4	9
15	Enhanced Photoelectrocatalytic H ₂ Evolution over Twoâ€Dimensional MoS ₂ Nanosheets Loaded on Cuâ€Doped CdS Nanorods. ChemElectroChem, 2019, 6, 714-723.	3.4	9
16	PEDOT solidâ€state polymer supercapacitor assembled with a Klâ€doped gel polymer electrolyte. Journal of Applied Polymer Science, 2020, 137, 48723.	2.6	8
17	Preparation of Cuâ^'MoS ₂ /CdS Composite and Photoelectrocatalysis for Hydrogen Evolution. ChemistrySelect, 2021, 6, 2878-2886.	1.5	6
18	Capacitance properties of unipolar pulsed electroâ€polymerized PEDOT films. Journal of Applied Polymer Science, 2018, 135, 46729.	2.6	5

#	Article	IF	CITATIONS
19	Synthesis of epichlorohydrin from 1,3â€dichlorohydrin with solid catalysts using γâ€Al ₂ O ₃ as carrier material. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2424.	1.5	5
20	A BiOCl/bipolar membrane as a separator for regenerating NaOH in water-splitting cells. RSC Advances, 2016, 6, 9880-9883.	3.6	4
21	Enhanced photoelectrocatalytic performance of α-MnO ₂ by Sb and N charge compensation. New Journal of Chemistry, 2021, 45, 22261-22268.	2.8	Ο