
Jenna Wiens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2901568/publications.pdf Version: 2024-02-01

IENNA WIENS

#	Article	IF	CITATIONS
1	Do no harm: a roadmap for responsible machine learning for health care. Nature Medicine, 2019, 25, 1337-1340.	15.2	451
2	Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare Epidemiology. Clinical Infectious Diseases, 2018, 66, 149-153.	2.9	311
3	A Framework for Effective Application of Machine Learning to Microbiome-Based Classification Problems. MBio, 2020, 11, .	1.8	118
4	A Generalizable, Data-Driven Approach to Predict Daily Risk of∢i>Clostridium difficileInfection at Two Large Academic Health Centers. Infection Control and Hospital Epidemiology, 2018, 39, 425-433.	1.0	104
5	A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 699-706.	2.2	90
6	Evaluating a Widely Implemented Proprietary Deterioration Index Model among Hospitalized Patients with COVID-19. Annals of the American Thoracic Society, 2021, 18, 1129-1137.	1.5	66
7	Machine learning for patient risk stratification for acute respiratory distress syndrome. PLoS ONE, 2019, 14, e0214465.	1.1	55
8	Using Machine Learning and the Electronic Health Record to Predict Complicated Clostridium difficile Infection. Open Forum Infectious Diseases, 2019, 6, ofz186.	0.4	44
9	Learning Data-Driven Patient Risk Stratification Models for Clostridium difficile. Open Forum Infectious Diseases, 2014, 1, ofu045.	0.4	42
10	The number needed to benefit: estimating the value of predictive analytics in healthcare. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 1655-1659.	2.2	39
11	Democratizing EHR analyses with FIDDLE: a flexible data-driven preprocessing pipeline for structured clinical data. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1921-1934.	2.2	39
12	Diagnosing bias in data-driven algorithms for healthcare. Nature Medicine, 2020, 26, 25-26.	15.2	38
13	Development and Validation of a Deep-learning Model to Assist With Renal Cell Carcinoma Histopathologic Interpretation. Urology, 2020, 144, 152-157.	0.5	32
14	mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines. Journal of Open Source Software, 2021, 6, 3073.	2.0	29
15	Predicting Acute Graft-Versus-Host Disease Using Machine Learning and Longitudinal Vital Sign Data From Electronic Health Records. JCO Clinical Cancer Informatics, 2020, 4, 128-135.	1.0	26
16	Early identification of patients admitted to hospital for covid-19 at risk of clinical deterioration: model development and multisite external validation study. BMJ, The, 2022, 376, e068576.	3.0	24
17	Automatically Evaluating Balance: A Machine Learning Approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 179-186.	2.7	23
18	Automated Brain Masking of Fetal Functional MRI with Open Data. Neuroinformatics, 2021, , 1.	1.5	23

Jenna Wiens

#	Article	IF	CITATIONS
19	Characterizing heterogeneity in the progression of Alzheimer's disease using longitudinal clinical and neuroimaging biomarkers. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 629-637.	1.2	21
20	Patient and Microbial Genomic Factors Associated with Carbapenem-Resistant Klebsiella pneumoniae Extraintestinal Colonization and Infection. MSystems, 2021, 6, .	1.7	16
21	Turning the crank for machine learning: ease, at what expense?. The Lancet Digital Health, 2019, 1, e198-e199.	5.9	13
22	Respecting Autonomy And Enabling Diversity: The Effect Of Eligibility And Enrollment On Research Data Demographics. Health Affairs, 2021, 40, 1892-1899.	2.5	13
23	Predicting Risk of Sport-Related Concussion in Collegiate Athletes and Military Cadets: A Machine Learning Approach Using Baseline Data from the CARE Consortium Study. Sports Medicine, 2021, 51, 567-579.	3.1	12
24	Combining chest X-rays and electronic health record (EHR) data using machine learning to diagnose acute respiratory failure. Journal of the American Medical Informatics Association: JAMIA, 2022, 29, 1060-1068.	2.2	12
25	Potential Adverse Effects of Broad-Spectrum Antimicrobial Exposure in the Intensive Care Unit. Open Forum Infectious Diseases, 2018, 5, ofx270.	0.4	9
26	Predicting postoperative opioid use with machine learning and insurance claims in opioid-naÃ ⁻ ve patients. American Journal of Surgery, 2021, 222, 659-665.	0.9	9
27	Cohort discovery and risk stratification for Alzheimer's disease: an electronic health recordâ€based approach. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12035.	1.8	8
28	Leveraging Clinical Time-Series Data for Prediction: A Cautionary Tale. AMIA Annual Symposium proceedings, 2017, 2017, 1571-1580.	0.2	7
29	Automated Loss-of-Balance Event Identification in Older Adults at Risk of Falls during Real-World Walking Using Wearable Inertial Measurement Units. Sensors, 2021, 21, 4661.	2.1	6
30	Augmenting existing deterioration indices with chest radiographs to predict clinical deterioration. PLoS ONE, 2022, 17, e0263922.	1.1	5
31	Striking the Right Balance—Applying Machine Learning to Pediatric Critical Care Data*. Pediatric Critical Care Medicine, 2018, 19, 672-673.	0.2	4
32	Use of blood pressure measurements extracted from the electronic health record in predicting Alzheimer's disease: A retrospective cohort study at two medical centers. Alzheimer's and Dementia, 2022, 18, 2368-2372.	0.4	4
33	Editorial: special issue on machine learning for health and medicine. Machine Learning, 2016, 102, 305-307.	3.4	3
34	Noninvasive Estimation of Hydration Status in Athletes Using Wearable Sensors and a Data-Driven Approach Based on Orthostatic Changes. Sensors, 2021, 21, 4469.	2.1	3
35	Automatically evaluating balance usingÂmachineÂlearning and data from a single inertial measurement unit. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 114.	2.4	3
36	Al models in health care are not colour blind and we should not be either. The Lancet Digital Health, 2022, 4, e399-e400.	5.9	3

Jenna Wiens

#	Article	IF	CITATIONS
37	Reports of the AAAI 2014 Conference Workshops. AI Magazine, 2015, 36, 87-98.	1.4	1
38	â€~No growth to date'? Predicting positive blood cultures in critical illness. Intensive Care Medicine, 2020, 46, 525-527.	3.9	1
39	Association Between Management of Continuous Subcutaneous Basal Insulin Administration and HbA1C. Journal of Diabetes Science and Technology, 2022, 16, 1120-1127.	1.3	1
40	A data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers. Open Forum Infectious Diseases, 2017, 4, S403-S404.	0.4	0
41	Advocacy Learning: Learning through Competition and Class-Conditional Representations. , 2019, , .		Ο
42	AMAISE: a machine learning approach to index-free sequence enrichment. Communications Biology, 2022, 5, .	2.0	0