James L Riley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2901491/publications.pdf Version: 2024-02-01

IAMES | RUEV

#	Article	IF	CITATIONS
1	Engineering T cells to survive and thrive in the hostile tumor microenvironment. Current Opinion in Biomedical Engineering, 2022, 21, 100360.	1.8	5
2	PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nature Medicine, 2022, 28, 724-734.	15.2	171
3	Trafficking and persistence of alloantigen-specific chimeric antigen receptor regulatory TÂcells in Cynomolgus macaque. Cell Reports Medicine, 2022, 3, 100614.	3.3	7
4	Challenges and Opportunities of Using Adoptive T-Cell Therapy as Part of an HIV Cure Strategy. Journal of Infectious Diseases, 2021, 223, S38-S45.	1.9	15
5	NPM–ALK-Induced Reprogramming of Mature TCR-Stimulated T Cells Results in Dedifferentiation and Malignant Transformation. Cancer Research, 2021, 81, 3241-3254.	0.4	10
6	Low-density PD-1 expression on resting human natural killer cells is functional and upregulated after transplantation. Blood Advances, 2021, 5, 1069-1080.	2.5	20
7	Genetic engineering of T cells for immunotherapy. Nature Reviews Genetics, 2021, 22, 427-447.	7.7	63
8	CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. Journal of Clinical Investigation, 2021, 131, .	3.9	52
9	Ultrasensitive antigen density discrimination by synNotch. Cell Research, 2021, 31, 725-726.	5.7	0
10	Characterization of CAR T cell expansion and cytotoxic potential during Ex Vivo manufacturing using image-based cytometry. Journal of Immunological Methods, 2020, 484-485, 112830.	0.6	6
11	Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nature Medicine, 2020, 26, 1776-1787.	15.2	63
12	Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nature Medicine, 2020, 26, 1339-1350.	15.2	96
13	How to kill Treg cells for immunotherapy. Nature Cancer, 2020, 1, 1134-1135.	5.7	7
14	Selective reactivation of STING signaling to target Merkel cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13730-13739.	3.3	39
15	HIV-Resistant and HIV-Specific CAR-Modified CD4+ T Cells Mitigate HIV Disease Progression and Confer CD4+ T Cell Help InÂVivo. Molecular Therapy, 2020, 28, 1585-1599.	3.7	29
16	Robust expansion of HIV CAR T cells following antigen boosting in ART-suppressed nonhuman primates. Blood, 2020, 136, 1722-1734.	0.6	37
17	CAR Talk: How Cancer-Specific CAR T Cells Can Instruct How to Build CAR T Cells to Cure HIV. Frontiers in Immunology, 2019, 10, 2310.	2.2	26
18	Differential Reliance on Lipid Metabolism as a Salvage Pathway Underlies Functional Differences of T Cell Subsets in Poor Nutrient Environments. Cell Reports, 2018, 23, 741-755.	2.9	45

#	Article	IF	CITATIONS
19	Role of PD-1 during effector CD8 T cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4749-4754.	3.3	327
20	Improved Expansion and InÂVivo Function of Patient T Cells by a Serum-free Medium. Molecular Therapy - Methods and Clinical Development, 2018, 8, 65-74.	1.8	37
21	Translating InÂVitro T Cell Metabolic Findings to InÂVivo Tumor Models of Nutrient Competition. Cell Metabolism, 2018, 28, 190-195.	7.2	19
22	CAR T cells for infection, autoimmunity and allotransplantation. Nature Reviews Immunology, 2018, 18, 605-616.	10.6	173
23	Generation of human islet-specific regulatory T cells by TCR gene transfer. Journal of Autoimmunity, 2017, 79, 63-73.	3.0	102
24	Modulation of Hepatitis C Virus-Specific CD8 Effector T-Cell Function with Antiviral Effect in Infectious Hepatitis C Virus Coculture Model. Journal of Virology, 2017, 91, .	1.5	4
25	In Vitro Induction of Human Regulatory T Cells Using Conditions of Low Tryptophan Plus Kynurenines. American Journal of Transplantation, 2017, 17, 3098-3113.	2.6	27
26	Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir. Journal of Infectious Diseases, 2017, 215, S160-S171.	1.9	24
27	Optimization of cGMP purification and expansion of umbilical cord blood–derived T-regulatory cells in support of first-in-human clinical trials. Cytotherapy, 2017, 19, 250-262.	0.3	41
28	Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathogens, 2017, 13, e1006613.	2.1	106
29	Umbilical cord blood–derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood, 2016, 127, 1044-1051.	0.6	333
30	miR-146b antagomir–treated human Tregs acquire increased GVHD inhibitory potency. Blood, 2016, 128, 1424-1435.	0.6	70
31	Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. Journal of Clinical Investigation, 2016, 126, 2642-2660.	3.9	81
32	Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus. PLoS Pathogens, 2016, 12, e1005983.	2.1	43
33	Engineering T Cells to Functionally Cure HIV-1 Infection. Molecular Therapy, 2015, 23, 1149-1159.	3.7	43
34	Cutaneous T Cell Lymphoma Expresses Immunosuppressive CD80 (B7-1) Cell Surface Protein in a STAT5-Dependent Manner. Journal of Immunology, 2014, 192, 2913-2919.	0.4	27
35	Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood, 2014, 123, 61-69.	0.6	135
36	Stabilized Human TRIM5α Protects Human T Cells From HIV-1 Infection. Molecular Therapy, 2014, 22, 1084-1095.	3.7	33

#	Article	IF	CITATIONS
37	Multifactorial T-cell Hypofunction That Is Reversible Can Limit the Efficacy of Chimeric Antigen Receptor–Transduced Human T cells in Solid Tumors. Clinical Cancer Research, 2014, 20, 4262-4273.	3.2	339
38	Combination Checkpoint Blockade — Taking Melanoma Immunotherapy to the Next Level. New England Journal of Medicine, 2013, 369, 187-189.	13.9	65
39	Clinical Grade Manufacturing of Human Alloantigen-Reactive Regulatory T Cells for Use in Transplantation. American Journal of Transplantation, 2013, 13, 3010-3020.	2.6	226
40	The Potent Oncogene NPM-ALK Mediates Malignant Transformation of Normal Human CD4+ T Lymphocytes. American Journal of Pathology, 2013, 183, 1971-1980.	1.9	32
41	Efficient Clinical Scale Gene Modification via Zinc Finger Nuclease–Targeted Disruption of the HIV Co-receptor CCR5. Human Gene Therapy, 2013, 24, 245-258.	1.4	110
42	Strength of PD-1 signaling differentially affects T-cell effector functions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2480-9.	3.3	242
43	Cutting Edge: A Novel, Human-Specific Interacting Protein Couples FOXP3 to a Chromatin-Remodeling Complex That Contains KAP1/TRIM28. Journal of Immunology, 2013, 190, 4470-4473.	0.4	32
44	ldentification of a Titin-Derived HLA-A1–Presented Peptide as a Cross-Reactive Target for Engineered MAGE A3–Directed T Cells. Science Translational Medicine, 2013, 5, 197ra103.	5.8	539
45	The Human CD8β M-4 Isoform Dominant in Effector Memory T Cells Has Distinct Cytoplasmic Motifs That Confer Unique Properties. PLoS ONE, 2013, 8, e59374.	1.1	3
46	The Battle over mTOR: An Emerging Theatre in Host–Pathogen Immunity. PLoS Pathogens, 2012, 8, e1002894.	2.1	44
47	Kruppel-like Factor 2 Modulates CCR5 Expression and Susceptibility to HIV-1 Infection. Journal of Immunology, 2012, 189, 3815-3821.	0.4	22
48	TCR affinity and specificity requirements for human regulatory T-cell function. Blood, 2012, 119, 3420-3430.	0.6	49
49	CD25 Blockade Depletes and Selectively Reprograms Regulatory T Cells in Concert with Immunotherapy in Cancer Patients. Science Translational Medicine, 2012, 4, 134ra62.	5.8	264
50	Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T Cells. Science Translational Medicine, 2012, 4, 132ra53.	5.8	555
51	Massive ex Vivo Expansion of Human Natural Regulatory T Cells (T _{regs}) with Minimal Loss of in Vivo Functional Activity. Science Translational Medicine, 2011, 3, 83ra41.	5.8	326
52	Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nature Immunology, 2011, 12, 898-907.	7.0	179
53	Chronic Virus Infection Enforces Demethylation of the Locus that Encodes PD-1 in Antigen-Specific CD8+ T Cells. Immunity, 2011, 35, 400-412.	6.6	357
54	Clinical perspectives for regulatory T cells in transplantation tolerance. Seminars in Immunology, 2011, 23, 462-468.	2.7	95

#	Article	IF	CITATIONS
55	Generation and Large-Scale Expansion of Human Inducible Regulatory T Cells That Suppress Graft-Versus-Host Disease. American Journal of Transplantation, 2011, 11, 1148-1157.	2.6	192
56	Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells. Cancer Immunology, Immunotherapy, 2011, 60, 133-144.	2.0	29
57	Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. Journal of Translational Medicine, 2011, 9, 131.	1.8	52
58	The PDL1-PD1 Axis Converts Human T _H 1 Cells into Regulatory T Cells. Science Translational Medicine, 2011, 3, 111ra120.	5.8	370
59	Expression of a Functional CCR2 Receptor Enhances Tumor Localization and Tumor Eradication by Retargeted Human T cells Expressing a Mesothelin-Specific Chimeric Antibody Receptor. Clinical Cancer Research, 2011, 17, 4719-4730.	3.2	441
60	Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases. PLoS Pathogens, 2011, 7, e1002020.	2.1	130
61	Retinoic Acid and Rapamycin Differentially Affect and Synergistically Promote the Ex Vivo Expansion of Natural Human T Regulatory Cells. PLoS ONE, 2011, 6, e15868.	1.1	118
62	Histone/protein deacetylase inhibitors increase suppressive functions of human FOXP3+ Tregs. Clinical Immunology, 2010, 136, 348-363.	1.4	124
63	The Inducible Costimulator (ICOS) Is Critical for the Development of Human T _H 17 Cells. Science Translational Medicine, 2010, 2, 55ra78.	5.8	221
64	Steric Shielding of Surface Epitopes and Impaired Immune Recognition Induced by the Ebola Virus Glycoprotein. PLoS Pathogens, 2010, 6, e1001098.	2.1	132
65	Regulatory T Cells and Human Myeloid Dendritic Cells Promote Tolerance via Programmed Death Ligand-1. PLoS Biology, 2010, 8, e1000302.	2.6	81
66	HIV Sequence Variation Associated With env Antisense Adoptive T-cell Therapy in the hNSG Mouse Model. Molecular Therapy, 2010, 18, 803-811.	3.7	19
67	Engineering lymphocyte subsets: tools, trials and tribulations. Nature Reviews Immunology, 2009, 9, 704-716.	10.6	185
68	PDâ€1 signaling in primary T cells. Immunological Reviews, 2009, 229, 114-125.	2.8	655
69	Human T Regulatory Cell Therapy: Take a Billion or So and Call Me in the Morning. Immunity, 2009, 30, 656-665.	6.6	400
70	Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy In Vivo. Molecular Therapy, 2009, 17, 1453-1464.	3.7	988
71	Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3360-3365.	3.3	758
72	Are affinity-enhanced T cells the future of HIV therapy?. HIV Therapy, 2009, 3, 105-108.	0.6	1

#	Article	IF	CITATIONS
73	Genetic engineering of T cells for adoptive immunotherapy. Immunologic Research, 2008, 42, 166-181.	1.3	59
74	Adoptive immunotherapy: good habits instilled at youth have long-term benefits. Immunologic Research, 2008, 42, 182-196.	1.3	47
75	Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology, 2008, 26, 808-816.	9.4	916
76	Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nature Medicine, 2008, 14, 1390-1395.	15.2	224
77	The Paracaspase MALT1 Controls Caspase-8 Activation during Lymphocyte Proliferation. Molecular Cell, 2008, 31, 415-421.	4.5	67
78	CD28 Costimulation Is Essential for Human T Regulatory Expansion and Function. Journal of Immunology, 2008, 181, 2855-2868.	0.4	152
79	Cutting Edge: Foxp3-Mediated Induction of Pim 2 Allows Human T Regulatory Cells to Preferentially Expand in Rapamycin. Journal of Immunology, 2008, 180, 5794-5798.	0.4	167
80	Mode of Transmission Affects the Sensitivity of Human Immunodeficiency Virus Type 1 to Restriction by Rhesus TRIM5α. Journal of Virology, 2008, 82, 11117-11128.	1.5	63
81	Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells. Blood, 2008, 112, 2847-2857.	0.6	134
82	Distinct Effects of IL-18 on the Engraftment and Function of Human Effector CD8+ T Cells and Regulatory T Cells. PLoS ONE, 2008, 3, e3289.	1.1	48
83	Engineered ovarian cancer artificial antigen presenting cells (aAPCs) support CD8+T cells growth and function. FASEB Journal, 2008, 22, 519-519.	0.2	0
84	Engineering Artificial Antigen-presenting Cells to Express a Diverse Array of Co-stimulatory Molecules. Molecular Therapy, 2007, 15, 981-988.	3.7	236
85	FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. International Immunology, 2007, 19, 825-835.	1.8	124
86	Addition of Deoxynucleosides Enhances Human Immunodeficiency Virus Type 1 Integration and 2LTR Formation in Resting CD4 ⁺ T Cells. Journal of Virology, 2007, 81, 13938-13942.	1.5	52
87	RNA fingerprints provide direct evidence for the inhibitory role of TGFβ and PD-1 on CD4+ T cells in Hodgkin lymphoma. Blood, 2007, 110, 3226-3233.	0.6	76
88	Umbilical Cord Blood Xenografts in Immunodeficient Mice Reveal That T Cells Enhance Hematopoietic Engraftment Beyond Overcoming Immune Barriers by Stimulating Stem Cell Differentiation. Biology of Blood and Marrow Transplantation, 2007, 13, 1135-1144.	2.0	27
89	The road to recovery: translating PD-1 biology into clinical benefit. Trends in Immunology, 2007, 28, 48-50.	2.9	32
90	Signalling to suit function: tailoring phosphoinositide 3-kinase during T-cell activation. Trends in Immunology, 2007, 28, 161-168.	2.9	36

#	Article	IF	CITATIONS
91	FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4571-4576.	3.3	370
92	Prostaglandin E2 Impairs CD4+ T Cell Activation by Inhibition of lck: Implications in Hodgkin's Lymphoma. Cancer Research, 2006, 66, 1114-1122.	0.4	93
93	B and T Lymphocyte Attenuator-Mediated Signal Transduction Provides a Potent Inhibitory Signal to Primary Human CD4 T Cells That Can Be Initiated by Multiple Phosphotyrosine Motifs. Journal of Immunology, 2006, 176, 6603-6614.	0.4	76
94	The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood, 2005, 105, 13-21.	0.6	276
95	Ligation of CD28 by Its Natural Ligand CD86 in the Absence of TCR Stimulation Induces Lipid Raft Polarization in Human CD4 T Cells. Journal of Immunology, 2005, 175, 7848-7854.	0.4	33
96	CTLA-4 and PD-1 Receptors Inhibit T-Cell Activation by Distinct Mechanisms. Molecular and Cellular Biology, 2005, 25, 9543-9553.	1.1	1,609
97	cIAP2 is a ubiquitin protein ligase for BCL10 and is dysregulated in mucosa-associated lymphoid tissue lymphomas. Journal of Clinical Investigation, 2005, 116, 174-181.	3.9	91
98	Suppression of HIV-1 infection in primary CD4 T cells transduced with a self-inactivating lentiviral vector encoding a membrane expressed gp41-derived fusion inhibitor. Clinical Immunology, 2005, 115, 26-32.	1.4	32
99	Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB Journal, 2004, 18, 1303-1305.	0.2	157
100	Extensive Replicative Capacity of Human Central Memory T Cells. Journal of Immunology, 2004, 172, 6675-6683.	0.4	46
101	SHP-1 and SHP-2 Associate with Immunoreceptor Tyrosine-Based Switch Motif of Programmed Death 1 upon Primary Human T Cell Stimulation, but Only Receptor Ligation Prevents T Cell Activation. Journal of Immunology, 2004, 173, 945-954.	0.4	989
102	CTLA-4 and PD-1 Receptors Inhibit T-Cell Activation by Distinct Mechanisms Blood, 2004, 104, 2657-2657.	0.6	9
103	DC-SIGN and DC-SIGNR Bind Ebola Glycoproteins and Enhance Infection of Macrophages and Endothelial Cells. Virology, 2003, 305, 115-123.	1.1	338
104	HLA tetramer-based artificial antigen-presenting cells for stimulation of CD4+ T cells. Clinical Immunology, 2003, 106, 16-22.	1.4	70
105	FolateReceptor Alpha and Caveolae Are Not Required for Ebola VirusGlycoprotein-Mediated ViralInfection. Journal of Virology, 2003, 77, 13433-13438.	1.5	106
106	CD28 and Inducible Costimulatory Protein Src Homology 2 Binding Domains Show Distinct Regulation of Phosphatidylinositol 3-Kinase, Bcl-xL, and IL-2 Expression in Primary Human CD4 T Lymphocytes. Journal of Immunology, 2003, 171, 166-174.	0.4	146
107	Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11790-11795.	3.3	279
108	Cutting Edge: Regulatory T Cells from Lung Cancer Patients Directly Inhibit Autologous T Cell Proliferation. Journal of Immunology, 2002, 168, 4272-4276.	0.4	652

#	Article	IF	CITATIONS
109	Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15006-15011.	3.3	52
110	A Cell-Based Artificial Antigen-Presenting Cell Coated with Anti-CD3 and CD28 Antibodies Enables Rapid Expansion and Long-Term Growth of CD4 T Lymphocytes. Clinical Immunology, 2002, 105, 259-272.	1.4	84
111	The CD28 Signaling Pathway Regulates Glucose Metabolism. Immunity, 2002, 16, 769-777.	6.6	1,201
112	Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nature Biotechnology, 2002, 20, 143-148.	9.4	395
113	ICOS Costimulation Requires IL-2 and Can Be Prevented by CTLA-4 Engagement. Journal of Immunology, 2001, 166, 4943-4948.	0.4	111
114	Influenza Virus Upregulates CXCR4 Expression in CD4+ Cells. AIDS Research and Human Retroviruses, 2000, 16, 19-25.	0.5	9
115	Cd40 Ligand (Cd154) Triggers a Short-Term Cd4+ T Cell Activation Response That Results in Secretion of Immunomodulatory Cytokines and Apoptosis. Journal of Experimental Medicine, 2000, 191, 651-660.	4.2	185
116	Modulation of Susceptibility to HIV-1 Infection by the Cytotoxic T Lymphocyte Antigen 4 Costimulatory Molecule. Journal of Experimental Medicine, 2000, 191, 1987-1998.	4.2	51
117	Quantitation of HIV-1 Entry Cofactor Expression. , 1999, 17, 219-226.		0
118	Constitutive cell surface association between CD4 and CCR5. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7496-7501.	3.3	169
119	Large-Scale Production of CD4+ T Cells from HIV-1-Infected Donors After CD3/CD28 Costimulation*. Stem Cells and Development, 1998, 7, 437-448.	1.0	107
120	The role of co-stimulation in regulation of chemokine receptor expression and HIV-1 infection in primary T lymphocytes. Seminars in Immunology, 1998, 10, 195-202.	2.7	22
121	Productive Infection of Neonatal CD8+ T Lymphocytes by HIV-1. Journal of Experimental Medicine, 1998, 187, 1139-1144.	4.2	89
122	MHC Class II Gene Silencing in Trophoblast Cells Is Caused by Inhibition of CIITA Expression. American Journal of Reproductive Immunology, 1998, 40, 385-394.	1.2	42
123	NaıÌ^ve and Memory CD4 T Cells Differ in Their Susceptibilities to Human Immunodeficiency Virus Type 1 Infection following CD28 Costimulation: Implications for Transmission and Pathogenesis. Journal of Virology, 1998, 72, 8273-8280.	1.5	71
124	Differential Regulation of HIV-1 Fusion Cofactor Expression by CD28 Costimulation of CD4+ T Cells. Science, 1997, 276, 273-276.	6.0	206
125	Response from Carroll et al Trends in Microbiology, 1997, 5, 302-303.	3.5	3
126	Antiviral Effect and Ex Vivo CD4+ T Cell Proliferation in HIV-Positive Patients as a Result of CD28 Costimulation. Science, 1996, 272, 1939-1943.	6.0	224

#	Article	IF	CITATIONS
127	Activation of class II MHC genes requires both the X â~region and the class II transactivator (CIITA). Immunity, 1995, 2, 533-543.	6.6	176
128	Molecular analysis of G1B and G3A IFNγ mutants reveals that defects in CIITA or RFX result in defective class II MHC and li gene induction. Immunity, 1994, 1, 687-697.	6.6	136
129	Genetically Modified T Cells for Human Gene Therapy. , 0, , 193-205.		0