
Roland Marschall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2901210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organosilica Nanoparticles with Ordered Trimodal Porosity and Selectively Functionalized Mesopores. Chemie-Ingenieur-Technik, 2022, 94, 101-110.	0.4	1
2	[NiFe]-(Oxy)Sulfides Derived from NiFe2O4 for the Alkaline Hydrogen Evolution Reaction. Energies, 2022, 15, 543.	1.6	5
3	Tuning the photocatalytic activity of layered perovskite niobates by controlled ion exchange and hydration. Catalysis Science and Technology, 2022, 12, 1450-1457.	2.1	5
4	Selfâ€Assembled Fluorescent Block Copolymer Micelles with Responsive Emission. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
5	Frontispiz: Selbstassemblierte fluoreszierende Blockcopolymerâ€Mizellen mit responsiver Emission. Angewandte Chemie, 2022, 134, .	1.6	Ο
6	Frontispiece: Selfâ€Assembled Fluorescent Block Copolymer Micelles with Responsive Emission. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
7	Experimental correlation of Mn ³⁺ cation defects and electrocatalytic activity of α-MnO ₂ – an X-ray photoelectron spectroscopy study. Journal of Materials Chemistry A, 2022, 10, 15811-15838.	5.2	5
8	Sulfonation of porous materials and their proton conductivity. Microporous and Mesoporous Materials, 2021, 312, 110745.	2.2	15
9	Electrochemical CO ₂ Reduction: Tailoring Catalyst Layers in Gas Diffusion Electrodes. Advanced Sustainable Systems, 2021, 5, 2000088.	2.7	50
10	Mesoporous NiFe ₂ O ₄ with Tunable Pore Morphology for Electrocatalytic Water Oxidation. ChemElectroChem, 2021, 8, 227-239.	1.7	15
11	Spin States of 1D Iron(II) Coordination Polymers with Redox Active TTF(py) ₂ as Bridging Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 295-305.	0.6	5
12	Terrestrial solar radiation driven photodecomposition of ciprofloxacin in clinical wastewater applying mesostructured iron(III) oxide. Environmental Science and Pollution Research, 2021, 28, 6222-6231.	2.7	2
13	Immobilization of a copper complex based on the tripodal ligand (2â€aminoethyl)bis(2â€pyridylmethyl)amine (unsâ€penp). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 560-571.	0.6	7
14	50 Years of Materials Research for Photocatalytic Water Splitting. European Journal of Inorganic Chemistry, 2021, 2021, 2435-2441.	1.0	41
15	Perovskiteâ€Type Oxynitride Nanofibers Performing Photocatalytic Oxygen and Hydrogen Generation. Advanced Materials Interfaces, 2021, 8, 2100813.	1.9	6
16	Photocatalytic Nitrogen Reduction: Challenging Materials with Reaction Engineering. ChemPhotoChem, 2021, 5, 792-807.	1.5	16
17	Fast Microwave Synthesis of Phase-Pure Ni ₂ FeS ₄ Thiospinel Nanosheets for Application in Electrochemical CO ₂ Reduction. ACS Applied Energy Materials, 2021, 4, 8702-8708.	2.5	9
18	Magnetic NiFe ₂ O ₄ Nanoparticles Prepared via Nonâ€Aqueous Microwaveâ€Assisted Synthesis for Application in Electrocatalytic Water Oxidation. Chemistry - A European Journal, 2021, 27, 16990-17001.	1.7	21

#	Article	IF	CITATIONS
19	Flexible, Mechanically Stable, Porous Selfâ€Standing Microfiber Network Membranes of Covalent Organic Frameworks: Preparation Method and Characterization. Advanced Functional Materials, 2021, 31, 2106507.	7.8	34
20	Magnetic properties and structural analysis on spinel MnFe ₂ O ₄ nanoparticles prepared <i>via</i> nonâ€aqueous microwave synthesis. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2061-2072.	0.6	10
21	Fast low temperature synthesis of layered perovskite heterojunctions for overall water splitting. JPhys Energy, 2021, 3, 014002.	2.3	3
22	Corrigendum to Layered Dion-Jacobson type niobium oxides for photocatalytic hydrogen production prepared via molten salt synthesis. Catalysis Today, 2020, 353, 213.	2.2	2
23	Stabilization of nanosized MgFe2O4 nanoparticles in phenylene-bridged KIT-6-type ordered mesoporous organosilica (PMO). Microporous and Mesoporous Materials, 2020, 293, 109783.	2.2	5
24	Magnesium Ferrite (MgFe ₂ O ₄) Nanoparticles for Photocatalytic Antibiotics Degradation. Zeitschrift Fur Physikalische Chemie, 2020, 234, 645-654.	1.4	26
25	A Novel Synthesis Yielding Macroporous CaFe ₂ O ₄ Sponges for Solar Energy Conversion. Solar Rrl, 2020, 4, 1900570.	3.1	9
26	Tailoring the Size, Inversion Parameter, and Absorption of Phase-Pure Magnetic MgFe ₂ O ₄ Nanoparticles for Photocatalytic Degradations. ACS Applied Nano Materials, 2020, 3, 11587-11599.	2.4	27
27	Photoinduced Defect and Surface Chemistry of Niobium Tellurium Oxides ANbTeO ₆ (A = K,) Tj ETQ	2q1 1.9.78 1.9	4314 rgBT /O
28	Characterization of MFe ₂ O ₄ (M = Mg, Zn) Thin Films Prepared by Pulsed Laser Deposition for Photoelectrochemical Applications. Journal of Physical Chemistry C, 2019, 123, 18240-18247.	1.5	31
29	Fe _x Ni _{9â^'x} S ₈ (<i>x</i> = 3–6) as potential photocatalysts for solar-driven hydrogen production?. Faraday Discussions, 2019, 215, 216-226.	1.6	11
30	Independent Tailoring of Macropore and Mesopore Space in TiO ₂ Monoliths. Inorganic Chemistry, 2019, 58, 2599-2609.	1.9	7
31	Exploring wet chemistry approaches to ZnFe ₂ O ₄ spinel ferrite nanoparticles with different inversion degrees: a comparative study. Inorganic Chemistry Frontiers, 2019, 6, 1527-1534.	3.0	32
32	A highly porous and conductive composite gate electrode for OTFT sensors. RSC Advances, 2019, 9, 7278-7284.	1.7	8
33	Pitfalls in Heterogeneous Thermal, Electro―and Photocatalysis. ChemCatChem, 2019, 11, 2563-2574.	1.8	41
34	Sol–gel synthesis of mesoporous CaFe ₂ O ₄ photocathodes with hierarchical pore morphology. Sustainable Energy and Fuels, 2019, 3, 1150-1153.	2.5	16
35	Photocatalytic activity of multiphase TiO2(B)/anatase nanoparticle heterojunctions prepared from ionic liquids. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 34-40.	2.0	22
36	Electrospun CuO Nanofibre Assemblies for H ₂ S Sensing. Zeitschrift Fur Physikalische Chemie, 2018, 233, 105-116.	1.4	7

#	Article	IF	CITATIONS
37	Layered cesium copper titanate for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 227, 349-355.	10.8	23
38	A crystalline and 3D periodically ordered mesoporous quaternary semiconductor for photocatalytic hydrogen generation. Nanoscale, 2018, 10, 3225-3234.	2.8	25
39	A Novel and Versatile Grafting Procedure: Toward the Highest Possible Sulfonation Degree of Mesoporous Silica. Advanced Sustainable Systems, 2018, 2, 1700170.	2.7	8
40	Tailoring the diameter of electrospun layered perovskite nanofibers for photocatalytic water splitting. Journal of Materials Chemistry A, 2018, 6, 1971-1978.	5.2	17
41	Passivation layers for nanostructured photoanodes: ultra-thin oxides on InGaN nanowires. Journal of Materials Chemistry A, 2018, 6, 565-573.	5.2	26
42	Thermal Evolution of ZnS Nanostructures: Effect of Oxidation Phenomena on Structural Features and Photocatalytical Performances. Inorganic Chemistry, 2018, 57, 13104-13114.	1.9	15
43	Mesoporous Semiconductors: A New Model To Assess Accessible Surface Area and Increased Photocatalytic Activity?. ACS Applied Energy Materials, 2018, 1, 5787-5799.	2.5	34
44	The Influence of Tin(II) Incorporation on Visible Light Absorption and Photocatalytic Activity in Defectâ€Pyrochlores. Chemistry - A European Journal, 2018, 24, 18535-18543.	1.7	7
45	Ordered Mesoporous LiFe 5 O 8 Thinâ€Film Photoanodes for Water Splitting. ChemPhotoChem, 2018, 2, 1022-1026.	1.5	8
46	Layered Perovskite Nanofiber Heterojunctions with Tailored Diameter to Enhance Photocatalytic Water Splitting Performance. ACS Applied Energy Materials, 2018, 1, 2520-2525.	2.5	7
47	Synthesis of hydrated KTaWO ₆ nanoparticles and Sn(<scp>ii</scp>) incorporation for visible light absorption. Nanoscale, 2018, 10, 9691-9697.	2.8	7
48	Deconstructing collagen piezoelectricity using alanine-hydroxyproline-glycine building blocks. Nanoscale, 2018, 10, 9653-9663.	2.8	36
49	Mesoporous ZnFe 2 O 4 Photoanodes with Templateâ€Tailored Mesopores and Temperatureâ€Đependent Photocurrents. ChemPhysChem, 2018, 19, 2313-2320.	1.0	22
50	Electrospinning to Prepare Nanostructured Photocatalysts and Photoelectrodes. ECS Meeting Abstracts, 2018, MA2018-01, 1905-1905.	0.0	0
51	Heterogeneous Photoredox Catalysis: Reactions, Materials, and Reaction Engineering. European Journal of Organic Chemistry, 2017, 2017, 2085-2094.	1.2	51
52	Electrospun CuO Nanofibers: Stable Nanostructures for Solar Water Splitting. ChemPhotoChem, 2017, 1, 326-340.	1.5	30
53	Single crystal CsTaWO 6 nanoparticles for photocatalytic hydrogen production. Nano Energy, 2017, 31, 551-559.	8.2	21
54	Sulfonated Mesoporous Silica as Proton Exchanging Layer in Solidâ€ S tate Organic Transistor. Advanced Electronic Materials, 2017, 3, 1700316.	2.6	13

#	Article	IF	CITATIONS
55	Rational fabrication of a graphitic-C ₃ N ₄ /Sr ₂ KNb ₅ O ₁₅ nanorod composite with enhanced visible-light photoactivity for degradation of methylene blue and hydrogen production. RSC Advances, 2017, 7, 42774-42782.	1.7	4
56	Stabilization of Monodisperse, Phase-Pure MgFe ₂ O ₄ Nanoparticles in Aqueous and Nonaqueous Media and Their Photocatalytic Behavior. Journal of Physical Chemistry C, 2017, 121, 27126-27138.	1.5	45
57	Layered Dion-Jacobson type niobium oxides for photocatalytic hydrogen production prepared via molten salt synthesis. Catalysis Today, 2017, 287, 65-69.	2.2	27
58	Sensors: Sulfonated Mesoporous Silica as Proton Exchanging Layer in Solid tate Organic Transistor (Adv. Electron. Mater. 12/2017). Advanced Electronic Materials, 2017, 3, 1770055.	2.6	0
59	Pore Structure Controlling the Activity of Mesoporous Crystalline CsTaWO ₆ for Photocatalytic Hydrogen Generation. Advanced Energy Materials, 2016, 6, 1600208.	10.2	31
60	Highly mesoporous CsTaWO ₆ via hard-templating for photocatalytic hydrogen production. RSC Advances, 2016, 6, 79037-79042.	1.7	6
61	Proton Conduction in Sulfonated Organic–Inorganic Hybrid Monoliths with Hierarchical Pore Structure. ACS Applied Materials & Interfaces, 2016, 8, 25476-25488.	4.0	12
62	Hollow α-Fe ₂ O ₃ nanofibres for solar water oxidation: improving the photoelectrochemical performance by formation of α-Fe ₂ O ₃ /ITO-composite photoanodes. Journal of Materials Chemistry A, 2016, 4, 18444-18456.	5.2	37
63	Improved charge carrier separation in barium tantalate composites investigated by laser flash photolysis. Physical Chemistry Chemical Physics, 2016, 18, 10719-10726.	1.3	25
64	Aqueous Sol–Gel Route toward Selected Quaternary Metal Oxides with Single and Double Perovskite-Type Structure Containing Tellurium. Crystal Growth and Design, 2016, 16, 2535-2541.	1.4	12
65	An investigation of the optical properties and water splitting potential of the coloured metallic perovskites Sr1â^'Ba MoO3. Journal of Solid State Chemistry, 2016, 234, 87-92.	1.4	13
66	Weimar 2015: Catalysing Tomorrow's Solutions. ChemCatChem, 2015, 7, 1794-1796.	1.8	2
67	Heterojunctions in Composite Photocatalysts. Topics in Current Chemistry, 2015, 371, 143-172.	4.0	10
68	Correlating Changes in Electron Lifetime and Mobility on Photocatalytic Activity at Network-Modified TiO ₂ Aerogels. Journal of Physical Chemistry C, 2015, 119, 17529-17538.	1.5	42
69	Active Sites for Light Driven Proton Reduction in Y2Ti2O7 and CsTaWO6 Pyrochlore Catalysts Detected by In Situ EPR. Topics in Catalysis, 2015, 58, 769-775.	1.3	9
70	New insight into calcium tantalate nanocomposite photocatalysts for overall water splitting and reforming of alcohols and biomass derivatives. APL Materials, 2015, 3, 104412.	2.2	8
71	Understanding the Influence of Lattice Composition on the Photocatalytic Activity of Defectâ€Pyrochloreâ€5tructured Semiconductor Mixed Oxides. Advanced Functional Materials, 2015, 25, 905-912.	7.8	26
72	Layered Perovskite Nanofibers via Electrospinning for Overall Water Splitting. Small, 2015, 11, 2051-2057.	5.2	44

#	Article	IF	CITATIONS
73	Photocatalysis: Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity (Adv. Funct. Mater. 17/2014). Advanced Functional Materials, 2014, 24, 2420-2420.	7.8	30
74	German Catalysis on an International Scale in Weimar. ChemCatChem, 2014, 6, 1523-1525.	1.8	2
75	Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Advanced Functional Materials, 2014, 24, 2421-2440.	7.8	1,293
76	Non-metal doping of transition metal oxides for visible-light photocatalysis. Catalysis Today, 2014, 225, 111-135.	2.2	311
77	Improved overall water splitting with barium tantalate mixed oxide composites. Chemical Science, 2014, 5, 3746-3752.	3.7	49
78	Tetragonal tungsten bronze-type nanorod photocatalysts with tunnel structures: Ta substitution for Nb and overall water splitting. Journal of Materials Chemistry A, 2014, 2, 8815-8822.	5.2	33
79	Sol–gel synthesis of defect-pyrochlore structured CsTaWO6 and the tribochemical influences on photocatalytic activity. RSC Advances, 2013, 3, 18908.	1.7	34
80	Control of Phase Coexistence in Calcium Tantalate Composite Photocatalysts for Highly Efficient Hydrogen Production. Chemistry of Materials, 2013, 25, 4739-4745.	3.2	41
81	Enhanced photocatalytic hydrogen generation from barium tantalate composites. Photochemical and Photobiological Sciences, 2013, 12, 671-677.	1.6	57
82	Proton transport in functionalised additives for PEM fuel cells: contributions from atomistic simulations. Chemical Society Reviews, 2012, 41, 5143.	18.7	27
83	Composite proton-conducting polymer membranes for clean hydrogen production with solar light in a simple photoelectrochemical compartment cell. International Journal of Hydrogen Energy, 2012, 37, 4012-4017.	3.8	27
84	Preparation of porous composite ion-exchange membranes for desalination application. Journal of Materials Chemistry, 2011, 21, 7401.	6.7	83
85	Preparation of new sulfur-doped and sulfur/nitrogen co-doped CsTaWO6 photocatalysts for hydrogen production from water under visible light. Journal of Materials Chemistry, 2011, 21, 8871.	6.7	66
86	Detection of Homogeneous Distribution of Functional Groups in Mesoporous Silica by Small Angle Neutron Scattering and in Situ Adsorption of Nitrogen or Water. Langmuir, 2011, 27, 5516-5522.	1.6	21
87	Nâ€Đoped CsTaWO ₆ as a New Photocatalyst for Hydrogen Production from Water Splitting Under Solar Irradiation. Advanced Functional Materials, 2011, 21, 126-132.	7.8	135
88	Nâ€Đoped CsTaWO ₆ as a New Photocatalyst for Hydrogen Production from Water Splitting Under Solar Irradiation. Advanced Functional Materials, 2011, 21, 125-125.	7.8	2
89	Proton onducting Composite Membranes for Future Perspective Applications in Fuel Cells, Desalination Facilities and Photocatalysis. Chemie-Ingenieur-Technik, 2011, 83, 2177-2187.	0.4	3
90	Proton conductivity of ordered mesoporous materials containing aluminium. Journal of Power Sources, 2010, 195, 7781-7786.	4.0	8

#	Article	IF	CITATIONS
91	Synthesis of composite ion-exchange membranes and their electrochemical properties for desalination applications. Journal of Materials Chemistry, 2010, 20, 4669.	6.7	68
92	Nanoparticles of Mesoporous SO ₃ Hâ€Functionalized Siâ€MCMâ€41 with Superior Proton Conductivity. Small, 2009, 5, 854-859.	5.2	54
93	Proton conductivity of imidazole functionalized ordered mesoporous silica: Influence of type of anchorage, chain length and humidity. Microporous and Mesoporous Materials, 2009, 123, 21-29.	2.2	43
94	Detailed Simulation and Characterization of Highly Proton Conducting Sulfonic Acid Functionalized Mesoporous Materials under Dry and Humidified Conditions. Journal of Physical Chemistry C, 2009, 113, 19218-19227.	1.5	28
95	Insight into Proton Conduction of Immobilised Imidazole Systems Via Simulations and Impedance Spectroscopy. Fuel Cells, 2008, 8, 244-253.	1.5	30
96	New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO3H-functionalized mesoporous Si-MCM-41 particles. Journal of Membrane Science, 2008, 316, 164-175.	4.1	53
97	Development of polyoxadiazole nanocomposites for high temperature polymer electrolyte membrane fuel cells. Journal of Membrane Science, 2008, 322, 406-415.	4.1	38
98	TEXTURAL INVESTIGATIONS OF HIGHLY PROTON CONDUCTIVE FUNCTIONALIZED MESOPOROUS SIO2. , 2008, , .		0
99	Functionalized mesoporous materials used as proton conductive additives for high temperature PEM fuel cell membranes. Studies in Surface Science and Catalysis, 2007, 170, 1540-1545.	1.5	3
100	PrÃ p aration und Evaluation neuer Hybridâ€Protonenleiter – Teil II: Anorganische Nanoteilchen als Modifikator in Nafion®â€Hybridmembranen. Chemie-Ingenieur-Technik, 2007, 79, 2035-2041.	0.4	5
101	Proton conductivity of sulfonic acid functionalised mesoporous materials. Microporous and Mesoporous Materials, 2007, 99, 190-196.	2.2	84
102	Ordered Functionalized Silica Materials with High Proton Conductivity. Chemistry of Materials, 2007, 19, 6401-6407.	3.2	90
103	Acceleration of electrocatalytic CO ₂ reduction by adding proton-coupled electron transfer inducing compounds. Journal of Photonics for Energy, 0, , 012001.	0.8	0
104	The Elemental Multifariousness of the Defectâ€Pyrochlore Crystal Structure and Application in Photocatalytic Hydrogen Generation. Energy Technology, 0, , 2100302.	1.8	5
105	Selfâ€Assembled Fluorescent Block Copolymer Micelles with Responsive Emission. Angewandte Chemie, 0, , .	1.6	0