
Joseph E Reiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2901124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the use of laser heating to detail the physical mechanisms of nanopore sensing. Biophysical Journal, 2022, 121, 541a-542a.	0.5	0
2	Highlights on the current state of proteomic detection and characterization with nanopore sensors. Proteomics, 2022, 22, 2100061.	2.2	1
3	Nanopore Analysis as a Tool for Studying Rapid Holliday Junction Dynamics and Analyte Binding. Analytical Chemistry, 2022, 94, 10027-10034.	6.5	6
4	Biological nanopores elucidate the differences between isomers of mercaptobenzoic-capped gold clusters. Physical Chemistry Chemical Physics, 2021, 23, 7938-7947.	2.8	3
5	Laser-based temperature control to study the roles of entropy and enthalpy in polymer-nanopore interactions. Science Advances, 2021, 7, .	10.3	20
6	Nanopore sensing: A physical-chemical approach. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183644.	2.6	27
7	Resistive-Pulse Nanopore Sensing of Ligand Exchange at the Single Nanocluster Limit for Peptide Detection. ACS Applied Nano Materials, 2020, 3, 7973-7981.	5.0	7
8	Single-molecule analysis of i-motif within self-assembled DNA duplexes and nanocircles. Nucleic Acids Research, 2019, 47, 7199-7212.	14.5	28
9	Ligand-Induced Structural Changes of Thiolate-Capped Gold Nanoclusters Observed with Resistive-Pulse Nanopore Sensing. Journal of the American Chemical Society, 2019, 141, 3792-3796.	13.7	16
10	Optical tweezers as an effective tool for spermatozoa isolation from mixed forensic samples. PLoS ONE, 2019, 14, e0211810.	2.5	24
11	Determining the Physical Properties of Molecules with Nanometer-Scale Pores. ACS Sensors, 2018, 3, 251-263.	7.8	28
12	The Utility of Nanopore Technology for Protein and Peptide Sensing. Proteomics, 2018, 18, e1800026.	2.2	58
13	Redox Potential Measurements in Red Blood Cell Packets Using Nanoporous Gold Electrodes. ACS Sensors, 2018, 3, 1601-1608.	7.8	14
14	Single Molecule Nanopore Spectrometry for Peptide Detection. ACS Sensors, 2017, 2, 1319-1328.	7.8	81
15	Microdroplet-Based Potentiometric Redox Measurements on Gold Nanoporous Electrodes. Analytical Chemistry, 2016, 88, 3768-3774.	6.5	12
16	Infrared Laser Heating Applied to Nanopore Sensing for DNA Duplex Analysis. Analytical Chemistry, 2016, 88, 2645-2651.	6.5	13
17	Improving the prospects of cleavage-based nanopore sequencing engines. Journal of Chemical Physics, 2015, 143, 074904.	3.0	12
18	Voltage and blockade state optimization of cluster-enhanced nanopore spectrometry. Analyst, The, 2015, 140, 7718-7725.	3.5	11

Joseph E Reiner

#	Article	IF	CITATIONS
19	Functional characterization of a melittin analog containing a nonâ€natural tryptophan analog. Biopolymers, 2015, 104, 384-394.	2.4	24
20	Enhanced Single Molecule Mass Spectrometry via Charged Metallic Clusters. Analytical Chemistry, 2014, 86, 11077-11085.	6.5	29
21	Theory of Polymer–Nanopore Interactions Refined Using Molecular Dynamics Simulations. Journal of the American Chemical Society, 2013, 135, 7064-7072.	13.7	65
22	Temperature Sculpting in Yoctoliter Volumes. Journal of the American Chemical Society, 2013, 135, 3087-3094.	13.7	51
23	Anthrax toxin-induced rupture of artificial lipid bilayer membranes. Journal of Chemical Physics, 2013, 139, 065101.	3.0	18
24	Characterizing individual Au25(SG)18 clusters within a nanopore detector. Materials Research Society Symposia Proceedings, 2012, 1484, 16.	0.1	0
25	Disease Detection and Management via Single Nanopore-Based Sensors. Chemical Reviews, 2012, 112, 6431-6451.	47.7	222
26	Kinetic Dynamcs in an Î \pm Hl-Based Nanopore DNA Sequencer. Biophysical Journal, 2012, 102, 727a.	0.5	0
27	PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNASequencing by Synthesis. Scientific Reports, 2012, 2, 684.	3.3	109
28	Detecting and Characterizing Individual Molecules with Single Nanopores. Methods in Molecular Biology, 2012, 870, 3-20.	0.9	5
29	Simulating Nanopore Sensor Dynamics Over Long Times Scales. Biophysical Journal, 2012, 102, 728a.	0.5	Ο
30	The effects of diffusion on an exonuclease/nanopore-based DNA sequencing engine. Journal of Chemical Physics, 2012, 137, 214903.	3.0	30
31	Integrating biological molecules with electrode surfaces for bioanalytical sensing applications. , 2011, , .		0
32	Detection of Heteroplasmic Mitochondrial DNA in Single Mitochondria. PLoS ONE, 2010, 5, e14359.	2.5	25
33	Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proceedings of the United States of America, 2010, 107, 12080-12085.	7.1	195
34	Changes in ion channel geometry resolved to sub-ångström precision via single molecule mass spectrometry. Journal of Physics Condensed Matter, 2010, 22, 454108.	1.8	27
35	Accurate Optical Analysis of Single-Molecule Entrapment in Nanoscale Vesicles. Analytical Chemistry, 2010, 82, 180-188.	6.5	13
36	Creation and Mixing of Monodisperse Sub-femtoliter Bioreactors. Biophysical Journal, 2009, 96, 27a-28a.	0.5	0

Joseph E Reiner

#	Article	IF	CITATIONS
37	Generation and Mixing of Subfemtoliter Aqueous Droplets On Demand. Analytical Chemistry, 2009, 81, 8041-8047.	6.5	19
38	Preparation of nanoparticles by continuous-flow microfluidics. Journal of Nanoparticle Research, 2008, 10, 925-934.	1.9	217
39	Nanoscopic Porous Sensors. Annual Review of Analytical Chemistry, 2008, 1, 737-766.	5.4	261
40	Green Fluorescent Protein in Inertially Injected Aqueous Nanodroplets. Langmuir, 2008, 24, 4975-4978.	3.5	24
41	Electronic Detection of Biomolecules. , 2008, , .		0
42	Liposome characterization with fluorescence cumulant analysis. , 2007, , .		1
43	Hydrosomes: optically trapped water droplets as nano-containers. , 2007, , .		1
44	Stable and robust nanotubes formed from self-assembled polymer membranes. , 2006, , .		1
45	Stable and robust polymer nanotubes stretched from polymersomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1173-1177.	7.1	45
46	Development of an Optical Tweezers Methodology to Separate Single Cells and Single Mitochondria to Determine the Location of Heteroplasmy in Mitochondrial DNA. FASEB Journal, 2006, 20, A921.	0.5	0
47	Broadening mechanisms and their effects in non-classical correlations on cavity QED with atomic beams. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 135-142.	1.4	2
48	Intensity-field correlations of non-classical light. Progress in Optics, 2004, 46, 355-404.	0.6	8
49	Optical manipulation of nanocontainers for biotechnology. , 2004, , .		0
50	Optical manipulation of lipid and polymer nanotubes with optical tweezers. , 2004, 5514, 246.		2
51	Capture and Release of a Conditional State of a Cavity QED System by Quantum Feedback. Physical Review Letters, 2002, 89, 133601.	7.8	100
52	Third-order correlations in cavity quantum electrodynamics. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4, S281-S284.	1.4	3
53	Quantum Dots: Capture and Release of a Quantum State by Quantum Feedback. Optics and Photonics News, 2002, 13, 53.	0.5	1