Hamideh Imanzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2900386/publications.pdf

Version: 2024-02-01

1478505 1474206 12 77 9 6 citations h-index g-index papers 12 12 12 84 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Polymers of intrinsic microporosity (PIMs) in sensing and in electroanalysis. Current Opinion in Chemical Engineering, 2022, 35, 100765.	7.8	10
2	Electrochemical Determination of Famotidine in Real Samples Using rGO/Cu ₂ O Nanocomposite Modified Carbon Paste Electrode. Journal of the Electrochemical Society, 2022, 169, 016505.	2.9	4
3	Mixed metal oxides as efficient electrocatalysts for water oxidation. International Journal of Hydrogen Energy, 2022, 47, 5250-5259.	7.1	14
4	An Overview on Electrochemical Sensors Based on Nanomaterials for the Determination of Drugs of Abuse. Current Drug Delivery, 2021, 18, 162-183.	1.6	6
5	Non-enzymatic electrochemical cholesterol sensor based on strong host-guest interactions with a polymer of intrinsic microporosity (PIM) with DFT study. Analytical and Bioanalytical Chemistry, 2021, 413, 6523-6533.	3.7	7
6	Achievements of Graphene and Its Derivatives Materials on Electrochemical Drug Assays and Drug-DNA Interactions Critical Reviews in Analytical Chemistry, 2021, , 1-22.	3.5	0
7	Effect of Carbon Support on the Electrocatalytic Performance of the Pt Nanoparticles Toward Oxidation of Formic Acid. Catalysis Letters, 2020, 150, 312-321.	2.6	5
8	A sensitive nanocomposite design via carbon nanotube and silver nanoparticles: Selective probing of Emedastine Difumarate. Journal of Pharmaceutical and Biomedical Analysis, 2020, 181, 113096.	2.8	10
9	Methods for design and fabrication of nanosensors and their electrochemical applications on pharmaceutical compounds., 2020,, 31-61.		1
10	Magnetic Nanosensor Design and Assay of an Anti-Tuberculosis Drug. Journal of the Electrochemical Society, 2019, 166, B933-B941.	2.9	5
11	Investigation of Electrochemical Oxidation Mechanism, Thermodynamic Parameters and Sensor Design for Analgesic and Relaxant Drug: Phenyramidol in Aqueous Medium by NH ₂ <i>f</i> MWCNT. Journal of the Electrochemical Society, 2019, 166, B1209-B1216.	2.9	5
12	Carbon nanoparticles with tosyl functional group for distinguishing voltammetric peaks of ascorbic acid and uric acid. Materials Science and Engineering C, 2015, 47, 189-195.	7.3	10