
AgnÃ"s GranÃ-er

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2900166/publications.pdf Version: 2024-02-01

ACNÃ"S CRANÃER

#	Article	IF	CITATIONS
1	Low-temperature deposition of self-cleaning anatase TiO2 coatings on polymer glazing via sequential continuous and pulsed PECVD. Surface and Coatings Technology, 2022, 436, 128256.	4.8	3
2	Hybrid approaches coupling sol–gel and plasma for the deposition of oxide-based nanocomposite thin films: a review. SN Applied Sciences, 2021, 3, 1.	2.9	6
3	Unveiling a critical thickness in photocatalytic TiO ₂ thin films grown by plasma-enhanced chemical vapor deposition using real time in situ spectroscopic ellipsometry. Journal Physics D: Applied Physics, 2021, 54, 445303.	2.8	4
4	TiO ₂ –SiO ₂ nanocomposite thin films deposited by direct liquid injection of colloidal solution in an O ₂ /HMDSO low-pressure plasma. Journal Physics D: Applied Physics, 2021, 54, 085206.	2.8	12
5	Unravelling local environments in mixed TiO2–SiO2 thin films by XPS and ab initio calculations. Applied Surface Science, 2020, 510, 145056.	6.1	23
6	Modification of the optical properties and nano-crystallinity of anatase TiO2nanoparticles thin film using low pressure O2 plasma treatment. Thin Solid Films, 2020, 709, 138212.	1.8	9
7	Plasma deposition—Impact of ions in plasma enhanced chemical vapor deposition, plasma enhanced atomic layer deposition, and applications to area selective deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	32
8	Anatase TiO2 deposited at low temperature by pulsing an electron cyclotron wave resonance plasma source. Scientific Reports, 2020, 10, 21952.	3.3	3
9	TEM analysis of photocatalytic TiO2 thin films deposited on polymer substrates by low-temperature ICP-PECVD. Applied Surface Science, 2019, 491, 116-122.	6.1	20
10	lon impingement effect on the structure and optical properties of Ti x Si 1â^' x O 2 films deposited by ICPâ€PECVD. Plasma Processes and Polymers, 2019, 16, 1900034.	3.0	3
11	Nanostructure and photocatalytic properties of TiO2 films deposited at low temperature by pulsed PECVD. Applied Surface Science, 2019, 466, 63-69.	6.1	27
12	Microstructure and Photocatalytic Properties of TiO2–Reduced Graphene Oxide Nanocomposites Prepared by Solvothermal Method. Journal of Electronic Materials, 2018, 47, 7372-7379.	2.2	8
13	The Effect of Plasma Gas Composition on the Nanostructures and Optical Properties of TiO2 Films Prepared by Helicon-PECVD. Nano, 2018, 13, 1850124.	1.0	1
14	Annealing and biasing effects on the structural and optical properties of PECVD-grown TiO2 films from TTIP/O2 plasma. Journal of Materials Science: Materials in Electronics, 2018, 29, 13254-13264.	2.2	3
15	Tailoring the chemistry and the nano-architecture of organic thin films using cold plasma processes. Plasma Processes and Polymers, 2017, 14, 1700042.	3.0	6
16	Structural and optical properties of RF-biased PECVD TiO2 thin films deposited in an O2/TTIP helicon reactor. Vacuum, 2016, 131, 231-239.	3.5	11
17	Effect of growth interruptions on TiO 2 films deposited by plasma enhanced chemical vapour deposition. Materials Chemistry and Physics, 2016, 182, 409-417.	4.0	15
18	Structural and Optical Properties of PECVD TiO ₂ -SiO ₂ Mixed Oxide Films for Optical Applications. Plasma Processes and Polymers, 2016, 13, 918-928.	3.0	17

Agnès GranÃer

#	Article	IF	CITATIONS
19	Creating nanoporosity in silver nanocolumns by direct exposure to radio-frequency air plasma. Nanoscale, 2016, 8, 141-148.	5.6	34
20	Effect of ion bombardment on the structural and optical properties of TiO2 thin films deposited from oxygen/titanium tetraisopropoxide inductively coupled plasma. Thin Solid Films, 2015, 589, 783-791.	1.8	21
21	Titanium carbide/carbon nanocomposite hard coatings: A comparative study between various chemical analysis tools. Surface and Coatings Technology, 2014, 256, 41-46.	4.8	12
22	H atom surface loss kinetics in pulsed inductively coupled plasmas. Plasma Sources Science and Technology, 2013, 22, 055004.	3.1	6
23	In situ spectroscopic ellipsometry study of TiO2 films deposited by plasma enhanced chemical vapour deposition. Applied Surface Science, 2013, 283, 234-239.	6.1	34
24	X-ray reflectometry study of diamond-like carbon films prepared by plasma enhanced chemical vapor deposition in a low pressure inductively coupled plasma. Thin Solid Films, 2013, 537, 102-107.	1.8	0
25	Spectroscopic ellipsometry analysis of TiO2 films deposited by plasma enhanced chemical vapor deposition in oxygen/titanium tetraisopropoxide plasma. Thin Solid Films, 2012, 522, 366-371.	1.8	23
26	Structural characterization and electrochemical behavior of titanium carbon thin films. Surface and Coatings Technology, 2012, 211, 192-195.	4.8	7
27	The influence of Ni content on the characteristics of C–Ni thin films. Surface and Coatings Technology, 2012, 211, 188-191.	4.8	7
28	Fabrication of a nickel nanowire mesh electrode suspended on polymer substrate. Nanotechnology, 2012, 23, 275603.	2.6	10
29	Shape control of nickel nanostructures incorporated in amorphous carbon films: From globular nanoparticles toward aligned nanowires. Journal of Applied Physics, 2012, 111, .	2.5	24
30	Highly ordered ultralong magnetic nanowires wrapped in stacked graphene layers. Beilstein Journal of Nanotechnology, 2012, 3, 846-851.	2.8	8
31	Hierarchical carbon nanostructure design: ultra-long carbon nanofibers decorated with carbon nanotubes. Nanotechnology, 2011, 22, 435302.	2.6	23
32	Synthesis of nickel-filled carbon nanotubes at 350 °C. Carbon, 2011, 49, 4595-4598.	10.3	25
33	XPS study of the surface composition modification of nc-TiC/C nanocomposite films under in situ argon ion bombardment. Thin Solid Films, 2011, 519, 3982-3985.	1.8	59
34	Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors. Electrochimica Acta, 2010, 55, 7916-7922.	5.2	17
35	Microstructure and composition of TiC/a-C:H nanocomposite thin films deposited by a hybrid IPVD/PECVD process. Surface and Coatings Technology, 2010, 204, 1880-1883.	4.8	35
36	Response to "Comment on â€~Carbon nanowalls as material for electrochemical tranducers' ―[Appl. Phys. Lett. 96 126102 (2010)]. Applied Physics Letters, 2010, 96, 126103.	3.3	2

Agnès GranÃer

#	Article	IF	CITATIONS
37	Titanium carbide/carbon composite nanofibers prepared by a plasma process. Nanotechnology, 2010, 21, 435603.	2.6	13
38	Carbon nanowalls as material for electrochemical transducers. Applied Physics Letters, 2009, 95, .	3.3	47
39	Ionized Physical Vapour Deposition combined with PECVD, for synthesis of carbon–metal nanocomposite thin films. Solid State Sciences, 2009, 11, 1824-1827.	3.2	14
40	Influence of Ion Bombardment and Annealing on the Structural and Optical Properties of TiO _{<i>x</i>} Thin Films Deposited in Inductively Coupled TTIP/O ₂ Plasma. Plasma Processes and Polymers, 2009, 6, S741.	3.0	8
41	Early stages of the carbon nanotube growth by low pressure CVD and PE-CVD. Diamond and Related Materials, 2009, 18, 61-65.	3.9	20
42	Integration of a carbon nanotube based electrode in silicon microtechnology to fabricate electrochemical transducers. Nanotechnology, 2008, 19, 435502.	2.6	8
43	Integrated optics based on plasma processed dielectric materials. Proceedings of SPIE, 2008, , .	0.8	Ο
44	Influence of ion bombardment on structural and electrical properties of SiO2thin films deposited from O2/HMDSO inductively coupled plasmas under continuous wave and pulsed modes. EPJ Applied Physics, 2008, 42, 3-8.	0.7	4
45	Impact of the etching gas on vertically oriented single wall and few walled carbon nanotubes by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2007, 101, 054317.	2.5	25
46	Investigation of O-atom kinetics in O ₂ , CO ₂ , H ₂ O and O ₂ /HMDSO low pressure radiofrequency pulsed plasmas by time-resolved optical emission spectroscopy. Plasma Sources Science and Technology, 2007, 16, 597-605.	3.1	28
47	Single- and Few-Walled Carbon Nanotubes Grown at Temperatures as Low as 450 °C: Electrical and Field Emission Characterization. Journal of Nanoscience and Nanotechnology, 2007, 7, 3350-3353.	0.9	4
48	ERDA and Structural Characterization of Oriented Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 10353-10358.	3.1	3
49	Impact of the Cu-based substrates and catalyst deposition techniques on carbon nanotube growth at low temperature by PECVD. Microelectronic Engineering, 2007, 84, 2501-2505.	2.4	20
50	First developments for photonics integrated on plasma-polymer-HMDSO: Single-mode TEOO–TMOO straight waveguides. Optical Materials, 2007, 30, 657-661.	3.6	8
51	Growth kinetics of low temperature single-wall and few walled carbon nanotubes grown by plasma enhanced chemical vapor deposition. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 34-39.	2.7	18
52	Comparative Study of Films Deposited from HMDSO/O2 in Continuous Wave and Pulsed rf Discharges. Plasma Processes and Polymers, 2007, 4, S287-S293.	3.0	13
53	Characterization of carbon nanotubes and carbon nitride nanofibres synthesized by PECVD. EPJ Applied Physics, 2006, 34, 157-163.	0.7	9
54	Growth and Modification of Organosilicon Films in PECVD and Remote Afterglow Reactors. Plasma Processes and Polymers, 2006, 3, 100-109.	3.0	57

AgnÃ^{..}s GranÃer

#	Article	IF	CITATIONS
55	Mechanisms Involved in the Conversion of ppHMDSO Films into SiO2-Like by Oxygen Plasma Treatment. Plasma Processes and Polymers, 2006, 3, 365-373.	3.0	20
56	Limits of the PECVD process for single wall carbon nanotubes growth. Chemical Physics Letters, 2006, 421, 242-245.	2.6	28
57	Low temperature plasma carbon nanotubes growth on patterned catalyst. Microelectronic Engineering, 2006, 83, 2427-2431.	2.4	6
58	Comparison of structure and mechanical properties of SiO2-like films deposited in O2/HMDSO pulsed and continuous plasmas. Surface and Coatings Technology, 2006, 200, 6517-6521.	4.8	25
59	Influence of plasma pulsing on the deposition kinetics and film structure in low pressure oxygen/hexamethyldisiloxane radiofrequency plasmas. Thin Solid Films, 2006, 514, 45-51.	1.8	26
60	Study of magnetic field influence on charged species in a low pressure helicon reactor. European Physical Journal D, 2006, 56, B1091-B1096.	0.4	0
61	Photonics integrated circuits on plasma-polymer-HMDSO: Single-mode TE00-TM00 straight waveguides, S-Bends, Y-Junctions and Mach-Zehnder Interferometers. , 2006, , .		0
62	Versatile SOG/SU-8/fluorinated SU-8 rib optical waveguides as microsystems: single-mode TE 00 -TM 00 straight waveguides, S-Bends, Y-Junctions, Mach-Zehnder interferometers. , 2005, 5956, 233.		0
63	Single chamber PVD/PECVD process for in situ control of the catalyst activity on carbon nanotubes growth. Surface and Coatings Technology, 2005, 200, 1101-1105.	4.8	30
64	XPS and NEXAFS characterisation of plasma deposited vertically aligned N-doped MWCNT. Diamond and Related Materials, 2005, 14, 891-895.	3.9	53
65	The combined study of the organosilicon films by RBS, ERDA and AFM analytical methods obtained from PECVD and PACVD. Surface Science, 2004, 566-568, 1143-1146.	1.9	7
66	Growth mechanisms of carbon nanotubes converted from diamond-like carbon films. Chemical Physics Letters, 2004, 397, 516-519.	2.6	3
67	Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2004, 85, 1244-1246.	3.3	56
68	Optical emission spectra of TEOS and HMDSO derived plasmas used for thin film deposition. Plasma Sources Science and Technology, 2003, 12, 89-96.	3.1	66
69	Electrical properties of low-dielectric-constant films prepared by PECVD in O2/CH4/HMDSO. Materials Science in Semiconductor Processing, 2002, 5, 279-284.	4.0	22
70	Analysis of Low-k Organosilicon and Low-Density Silica Films Deposited in HMDSO Plasmas. Plasmas and Polymers, 2002, 7, 341-352.	1.5	29
71	Carbon nanotubes and nanostructures grown from diamond-like carbon and polyethylene. Applied Physics A: Materials Science and Processing, 2001, 73, 765-768.	2.3	27
72	Structure and properties of silicon oxide films deposited in a dual microwave-rf plasma reactor. Thin Solid Films, 2001, 384, 230-235.	1.8	25

Agnès GranÃer

#	Article	IF	CITATIONS
73	Mass spectrometric investigation of the positive ions formed in low-pressure oxygen/tetraethoxysilane and argon/tetraethoxysilane plasmas. Journal of Applied Physics, 2001, 89, 5227-5229.	2.5	5
74	A comparative study of oxygen/organosilicon plasmas and thin SiOxCyHz films deposited in a helicon reactor. Thin Solid Films, 2000, 359, 188-196.	1.8	124
75	Analysis of Ti–Si–N diffusion barrier films obtained by r.f. magnetron sputtering. Microelectronic Engineering, 2000, 50, 509-513.	2.4	14
76	Measurements of rf bias effect in a dual electron cyclotron resonance-rf methane plasma using the Langmuir probe method. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 497-502.	2.1	9
77	Estimation of the TEOS dissociation coefficient by electron impact. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2728-2732.	2.1	6
78	Optical spectroscopic analyses of OH incorporation into SiO[sub 2] films deposited from O[sub 2]/tetraethoxysilane plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2452.	2.1	47
79	Study of oxygen/tetraethoxysilane plasmas in a helicon reactor using optical emission spectroscopy and mass spectrometry. Plasma Sources Science and Technology, 2000, 9, 331-339.	3.1	24
80	Inorganic to organic crossover in thin films deposited from O2/TEOS plasmas. Journal of Non-Crystalline Solids, 2000, 272, 163-173.	3.1	64
81	In situ deposition and etching process of a-C:H:N films in a dual electron cyclotron resonance–radio frequency plasma. Diamond and Related Materials, 2000, 9, 573-576.	3.9	22
82	Experimental investigation of the respective roles of oxygen atoms and electrons in the deposition of SiO2 in O2/TEOS helicon plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2470-2474.	2.1	20
83	Growth, microstructure and electronic properties of amorphous carbon nitride films investigated by plasma diagnostics. Journal of Applied Physics, 1999, 86, 4668-4676.	2.5	21
84	Experimental study of Ti–Si–N films obtained by radio frequency magnetron sputtering. Surface and Coatings Technology, 1999, 116-119, 922-926.	4.8	10
85	Silicon dioxide deposition in a microwave plasma reactor. Surface and Coatings Technology, 1999, 116-119, 868-873.	4.8	52
86	Chemical etching of thin SiOxCyHz films by post-deposition exposure to oxygen plasma. Applied Surface Science, 1999, 138-139, 57-61.	6.1	19
87	Study of oxygen/TEOS plasmas and thin SiOx films obtained in an helicon diffusion reactor. Surface and Coatings Technology, 1998, 98, 1578-1583.	4.8	27
88	Modelling of low-pressure surface wave discharges in flowing oxygen: I. Electrical properties and species concentrations. Plasma Sources Science and Technology, 1998, 7, 524-536.	3.1	47
89	Diagnostics in helicon plasmas for deposition. Plasma Sources Science and Technology, 1997, 6, 147-156.	3.1	92
90	In situ ellipsometry and infrared analysis of PECVD SiO2 films deposited in an O2/TEOS helicon reactor. Journal of Non-Crystalline Solids, 1997, 216, 48-54.	3.1	31

AgnÃ^{..}s GranÃer

#	Article	IF	CITATIONS
91	Direct observation of water incorporation in PECVD SiO2 films by UV-Visible ellipsometry. Thin Solid Films, 1997, 311, 212-217.	1.8	17
92	Polymer treatment in the flowing afterglow of an oxygen microwave discharge: Active species profile concentrations and kinetics of the functionalization. Plasma Chemistry and Plasma Processing, 1995, 15, 173-198.	2.4	55
93	Microwave discharge in H2: influence of H-atom density on the power balance. Journal Physics D: Applied Physics, 1994, 27, 1412-1422.	2.8	83
94	Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2â€N2mixtures. Journal of Applied Physics, 1994, 75, 104-114.	2.5	80
95	Surface Wave Plasmas in O2-N2 Mixtures as Active Species Sources for Surface Treatments. NATO ASI Series Series B: Physics, 1993, , 491-501.	0.2	6
96	Surface treatment of polypropylene by oxygen microwave discharge. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 139, 103-109.	5.6	34
97	Action of a static magnetic field on an argon discharge produced by a traveling wave. Journal of Applied Physics, 1989, 65, 1465-1478.	2.5	28
98	Characterisation of a low-pressure oxygen discharge created by surface waves. Journal Physics D: Applied Physics, 1989, 22, 1487-1496.	2.8	57
99	Microwave plasma in argon produced by a surface wave: study of the effect of pressure on the optical emission and the potentials for analysis of gaseous samples. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1988, 43, 963-970.	2.9	14
100	Low-Pressure Argon Discharge Sustained by a Wave with an External Applied Magnetic Field. Europhysics Letters, 1988, 6, 413-418.	2.0	7
101	Production of argon metastable atoms in high pressure (20-300 Torr) microwave discharges. Revue De Physique Appliquée, 1988, 23, 1749-1754.	0.4	7
102	Microwave discharges produced by surface waves in argon gas. Journal Physics D: Applied Physics, 1987, 20, 197-203.	2.8	82
103	Wave propagation and diagnostics in argon surface-wave discharges up to 100 Torr. Journal Physics D: Applied Physics, 1987, 20, 204-209.	2.8	67
104	Influence of the excitation frequency on surface wave argon discharges: Study of the light emission. Journal of Applied Physics, 1987, 61, 1740-1746.	2.5	48
105	Argon surface wave discharges at medium pressure. Experiments and discussion on the energy balance. Revue De Physique Appliquée, 1987, 22, 999-1006.	0.4	9