Lai Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2899380/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A High-Sensitivity Resonant Magnetic Sensor Based on Graphene Nanomechanical Resonator. Micromachines, 2022, 13, 628.	2.9	0
2	All-Optical Tuning of Fano Resonance for Quasi-BIC and Terahertz Sensing Applications. Applied Sciences (Switzerland), 2022, 12, 4207.	2.5	6
3	Facile synthesis of a dual-phase CsPbBr3–CsPb2Br5 single crystal and its photoelectric performance. RSC Advances, 2020, 10, 20745-20752.	3.6	13
4	Two-Dimensional Hybrid Composites of SnS2 Nanosheets Array Film with Graphene for Enhanced Photoelectric Performance. Nanomaterials, 2019, 9, 1122.	4.1	12
5	Postâ€Treatment of CH ₃ NH ₃ PbI ₃ /PbI ₂ Composite Films with Methylamine to Realize Highâ€Performance Photoconductor Devices. Chemistry - an Asian Journal, 2019, 14, 2861-2868.	3.3	7
6	Template growth of perovskites on yarn fibers induced by capillarity for flexible photoelectric applications. Journal of Materials Chemistry C, 2019, 7, 9496-9503.	5.5	12
7	Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials. Journal of Materials Chemistry A, 2019, 7, 540-548.	10.3	26
8	High-Performance Photoresistors Based on Perovskite Thin Film with a High PbI2 Doping Level. Nanomaterials, 2019, 9, 505.	4.1	12
9	Significant photoluminescence enhancement in WS ₂ monolayers through Na ₂ S treatment. Nanoscale, 2018, 10, 6105-6112.	5.6	35
10	Synthesis of Tetragonal Phase LiYF ₄ : Yb and Tm Microcrystals with Strong UV Upconversion Fluorescence. Journal of Nanomaterials, 2018, 2018, 1-4.	2.7	6
11	Recent advances of low-dimensional materials in lasing applications. FlatChem, 2018, 10, 22-38.	5.6	14
12	Mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide fibers. , 2018, , .		0
13	Mid-infrared rogue wave generation in chalcogenide fibers. Proceedings of SPIE, 2017, , .	0.8	2
14	Mid-infrared supercontinuum generation in chalcogenide multi-step index fibers with normal chromatic dispersion. Proceedings of SPIE, 2017, , .	0.8	1
15	Numerical investigation of highly coherent mid-infrared supercontinuum generation in chalcogenide double-clad fiber. Optical Fiber Technology, 2017, 36, 82-91.	2.7	16
16	Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile. Journal of Optics (United Kingdom), 2017, 19, 095502.	2.2	24
17	Increased Red Frequency Shift in Coherent Mid-Infrared Supercontinuum Generation From Tellurite Microstructured Fibers. Journal of Lightwave Technology, 2017, 35, 4740-4746.	4.6	21
18	Effects of Fluctuations of Pulse Duration and Peak Power on the Coherence Properties of Supercontinuum Spectra. , 2017, , .		0

Lai Liu

#	Article	IF	CITATIONS
19	Coherence property of mid-infrared supercontinuum generation in tapered chalcogenide fibers with different structures. Applied Physics Letters, 2016, 108, .	3.3	21
20	Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion. Optics Letters, 2016, 41, 392.	3.3	115
21	Numerical Investigation of Coherent Mid-infrared Supercontinuum Generation in Tapered Chalcogenide Fibers. , 2015, , .		0
22	Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers. Journal of Applied Physics, 2014, 115, 063106.	2.5	15
23	Multiple soliton self-frequency shift cancellations in a temporally tailored photonic crystal fiber. Applied Physics Letters, 2014, 105, 181113.	3.3	4
24	Numerical investigation of mid-infrared Raman soliton source generation in endless single mode fluoride fibers. Journal of Applied Physics, 2014, 115, .	2.5	18
25	Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers. Optics Letters, 2013, 38, 2851.	3.3	5
26	Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Applied Physics Letters, 2013, 103, .	3.3	119
27	All-optical control of group velocity dispersion in tellurite photonic crystal fibers. Optics Letters, 2012, 37, 5124.	3.3	16
28	Passively Q-switching induced by gold nanocrystals. Applied Physics Letters, 2012, 101, .	3.3	122
29	Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber. Optics Express, 2011, 19, 10041.	3.4	33