Damien Arrigan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2899359/publications.pdf

Version: 2024-02-01

61857 106150 5,714 178 43 65 citations h-index g-index papers 189 189 189 4438 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoelectrodes, nanoelectrode arrays and their applications. Analyst, The, 2004, 129, 1157.	1.7	438
2	Fabrication of Nanopore Array Electrodes by Focused Ion Beam Milling. Analytical Chemistry, 2007, 79, 3048-3055.	3.2	192
3	Tutorial review. Voltammetric determination of trace metals and organics after accumulation at modified electrodes. Analyst, The, 1994, 119, 1953.	1.7	162
4	Electrochemical strategies for the label-free detection of amino acids, peptides and proteins. Analyst, The, 2007, 132, 615.	1.7	115
5	Determination of trace metals by underpotential deposition–stripping voltammetry at solid electrodes. TrAC - Trends in Analytical Chemistry, 2005, 24, 208-217.	5.8	94
6	Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions. Talanta, 2007, 71, 1022-1030.	2.9	90
7	DNA arrays, electronic noses and tongues, biosensors and receptors for rapid detection of toxigenic fungi and mycotoxins: A review. Food Additives and Contaminants, 2005, 22, 335-344.	2.0	88
8	A study of L-cysteine adsorption on gold via electrochemical desorption and copper(II) ion complexation. Analyst, The, 1999, 124, 1645-1649.	1.7	85
9	Electrochemical Study of Insulin at the Polarized Liquidâ^'Liquid Interface. Langmuir, 2008, 24, 9876-9882.	1.6	83
10	Potentiometric evaluation of calix[4] arene anion receptors in membrane electrodes: Phosphate detection. Analytica Chimica Acta, 2007, 585, 154-160.	2.6	82
11	Calixarenes in electroanalysis. Electroanalysis, 1995, 7, 205-215.	1.5	81
12	Voltammetric studies of lead at calixarene modified screen-printed carbon electrodes and its trace determination in water by stripping voltammetry. Sensors and Actuators B: Chemical, 2001, 77, 642-652.	4.0	81
13	Electrochemical Immunochip Sensor for Aflatoxin M $<$ sub $>1sub> Detection. Analytical Chemistry, 2009, 81, 5291-5298.$	3.2	79
14	Electrochemical behaviour of haemoglobin at the liquid/liquid interface. Electrochimica Acta, 2008, 53, 7204-7209.	2.6	77
15	A scanning force microscopy study of poly(phenol) films containing immobilized glucose oxidase. Biosensors and Bioelectronics, 1998, 13, 293-304.	5. 3	7 5
16	Dopamine voltammetry at overoxidised polyindole electrodes. Electrochimica Acta, 2004, 49, 4743-4751.	2.6	73
17	Surface immobilisation of antibody on cyclic olefin copolymer for sandwich immunoassay. Biosensors and Bioelectronics, 2009, 24, 2654-2658.	5.3	73
18	lon-transfer voltammetry at silicon membrane-based arrays of micro-liquid–liquid interfaces. Lab on A Chip, 2007, 7, 1732.	3.1	70

#	Article	IF	Citations
19	Selective voltammetric detection of dopamine in the presence of ascorbateElectronic supplementary information (ESI) available: experimental details, cell compositions, methodology. See http://www.rsc.org/suppdata/cc/b3/b316493d/. Chemical Communications, 2004, , 732.	2.2	69
20	Bioanalytical Detection Based on Electrochemistry at Interfaces between Immiscible Liquids. Analytical Letters, 2008, 41, 3233-3252.	1.0	68
21	Interactions of proteins with small ionised molecules: electrochemical adsorption and facilitated ion transfer voltammetry of haemoglobin at the liquid liquid interface. Analyst, The, 2009, 134, 1608.	1.7	66
22	Evaluation of miniaturised solid state reference electrodes on a silicon based component. Sensors and Actuators B: Chemical, 1997, 44, 389-396.	4.0	65
23	An environmental monitoring system for trace metals using stripping voltammetry. Sensors and Actuators B: Chemical, 1998, 48, 409-414.	4.0	64
24	Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays $\hat{a}\in$ " simulations and experiments. Analyst, The, 2009, 134, 148-158.	1.7	64
25	Cyclic and pulse voltammetric study of dopamine at the interface between two immiscible electrolyte solutions. Biosensors and Bioelectronics, 2005, 20, 2097-2103.	5.3	63
26	Electrochemical behaviour of hen-egg-white lysozyme at the polarised water/1, 2-dichloroethane interface. Physical Chemistry Chemical Physics, 2009, 11, 2272.	1.3	61
27	Development of a portable electroanalytical system for the stripping voltammetry of metals: Determination of copper in acetic acid soil extracts. Analytica Chimica Acta, 2005, 552, 190-200.	2.6	59
28	Electrochemical Detection of Oligopeptides at Silicon-Fabricated Micro-Liquidâ^£Liquid Interfaces. Analytical Chemistry, 2008, 80, 5743-5749.	3.2	59
29	Application of Disorganized Monolayer Films on Gold Electrodes to the Prevention of Surfactant Inhibition of the Voltammetric Detection of Trace Metals via Anodic Stripping of Underpotential Deposits:Â Detection of Copper. Analytical Chemistry, 2003, 75, 319-323.	3.2	58
30	Surface chemical and physical modification in stent technology for the treatment of coronary artery disease. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1989-2014.	1.6	57
31	Electrochemistry of Non-Redox-Active Poly(propylenimine) and Poly(amidoamine) Dendrimers at Liquidâ°'Liquid Interfaces. Langmuir, 2007, 23, 7356-7364.	1.6	56
32	Recessed nanoband electrodes fabricated by focused ion beam milling. Sensors and Actuators B: Chemical, 2007, 121, 341-347.	4.0	55
33	Ion-Transfer Electrochemistry at Arrays of Nanointerfaces between Immiscible Electrolyte Solutions Confined within Silicon Nitride Nanopore Membranes. Analytical Chemistry, 2010, 82, 6115-6123.	3.2	55
34	Electrochemically Modulated Liquidâ^'Liquid Extraction of Ions. Analytical Chemistry, 2005, 77, 7310-7318.	3.2	53
35	Oxygen reduction voltammetry on platinum macrodisk and screen-printed electrodes in ionic liquids: Reaction of the electrogenerated superoxide species with compounds used in the paste of Pt screen-printed electrodes?. Electrochimica Acta, 2013, 101, 158-168.	2.6	53
36	Single Nanoskived Nanowires for Electrochemical Applications. Analytical Chemistry, 2011, 83, 5535-5540.	3.2	52

#	Article	IF	Citations
37	Electrochemical detection of dopamine using arrays of liquid–liquid micro-interfaces created within micromachined silicon membranes. Analytica Chimica Acta, 2008, 611, 156-162.	2.6	50
38	Detection of Food Additives by Voltammetry at the Liquidâ^Liquid Interface. Journal of Agricultural and Food Chemistry, 2008, 56, 4304-4310.	2.4	50
39	Ion-Transfer Voltammetric Determination of the \hat{I}^2 -Blocker Propranolol in a Physiological Matrix at Silicon Membrane-Based Liquid Liquid Microinterface Arrays. Analytical Chemistry, 2009, 81, 2344-2349.	3.2	50
40	Voltammetric Behavior and Trace Determination of Cadmium at a Calixarene Modified Screen-Printed Carbon Electrode. Electroanalysis, 2002, 14, 177.	1.5	48
41	Adsorptive Stripping Voltammetry of Hen-Egg-White-Lysozyme via Adsorption–Desorption at an Array of Liquid–Liquid Microinterfaces. Analytical Chemistry, 2012, 84, 2505-2511.	3.2	48
42	Role of the cell membrane interface in modulating production and uptake of Alzheimer's beta amyloid protein. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1639-1651.	1.4	47
43	Electropolishing of medical-grade stainless steel in preparation for surface nano-texturing. Journal of Solid State Electrochemistry, 2012, 16, 1389-1397.	1.2	45
44	Electrochemically Modulated Liquidâ^'Liquid Extraction of Ionized Drugs under Physiological Conditions. Analytical Chemistry, 2008, 80, 8102-8108.	3.2	43
45	Serum-protein effects on the detection of the \hat{I}^2 -blocker propranolol by ion-transfer voltammetry at a micro-ITIES array. Talanta, 2010, 80, 1993-1998.	2.9	42
46	Use of calixarenes as modifiers of carbon paste electrodes for voltammetric analysis. Electroanalysis, 1994, 6, 97-106.	1.5	41
47	A review of recent advances in electrochemically modulated extraction methods. Analytical and Bioanalytical Chemistry, 2009, 393, 835-845.	1.9	40
48	Voltammetric behaviour of biological macromolecules at arrays of aqueous organogel micro-interfaces. Physical Chemistry Chemical Physics, 2010, 12, 10040.	1.3	40
49	Selectivity in the Coextraction of Cation and Anion by Electrochemically Modulated Liquidâ^'Liquid Extraction. Analytical Chemistry, 2006, 78, 2717-2725.	3.2	37
50	Reactive amine surfaces for biosensor applications, prepared by plasma-enhanced chemical vapour modification of polyolefin materials. Biosensors and Bioelectronics, 2010, 25, 1875-1880.	5. 3	37
51	Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes. Sensing and Bio-Sensing Research, 2016, 9, 38-44.	2.2	37
52	Investigation into the voltammetric behaviour and detection of selenium(IV) at metal electrodes in diverse electrolyte media. Analytica Chimica Acta, 2011, 699, 127-133.	2.6	36
53	Microfluidic chip for electrochemically-modulated liquidâ^£liquid extraction of ions. Electrochemistry Communications, 2008, 10, 20-24.	2.3	35
54	Electrochemical behaviour of myoglobin at an array of microscopic liquid–liquid interfaces. Electrochimica Acta, 2012, 77, 71-76.	2.6	35

#	Article	IF	CITATIONS
55	Electrochemical detection of ractopamine at arrays of micro-liquid liquid interfaces. Talanta, 2015, 132, 205-214.	2.9	35
56	Microelectrode Arrays and Microfabricated Devices in Electrochemical Stripping Analysis. Current Analytical Chemistry, 2008, 4, 229-241.	0.6	33
57	Detection of haemoglobin using an adsorption approach at a liquid–liquid microinterface array. Analytical and Bioanalytical Chemistry, 2013, 405, 3801-3806.	1.9	33
58	Polypyrrole Films Doped with an Electroactive Sulfonated Chelating Reagent: Electrochemical Characterization and the Detection of Metal Ions. Electroanalysis, 1999, 11, 647-652.	1.5	32
59	Electrochemical oxidation of a hexasulfonated calix[6]arene. Journal of Electroanalytical Chemistry, 2001, 508, 81-88.	1.9	32
60	Electrochemical behaviour and voltammetric sensitivity at arrays of nanoscale interfaces between immiscible liquids. Analyst, The, 2011, 136, 4674.	1.7	32
61	Towards improving the robustness of electrochemical gas sensors: impact of PMMA addition on the sensing of oxygen in an ionic liquid. Analytical Methods, 2015, 7, 7327-7335.	1.3	32
62	Ion-Transfer Voltammetric Behavior of Propranolol at Nanoscale Liquid–Liquid Interface Arrays. Analytical Chemistry, 2015, 87, 4487-4494.	3.2	32
63	Enhanced Electroanalytical Sensitivity via Interface Miniaturisation: Ion Transfer Voltammetry at an Array of Nanometre Liquid–Liquid Interfaces. Electroanalysis, 2011, 23, 1023-1028.	1.5	31
64	Fabrication and characterization of a miniaturized planar voltammetric sensor array for use in an electronic tongue. Sensors and Actuators B: Chemical, 2009, 140, 532-541.	4.0	30
65	Achievement of Diffusional Independence at Nanoscale Liquid–Liquid Interfaces within Arrays. Analytical Chemistry, 2015, 87, 5486-5490.	3.2	30
66	Voltammetry of chromium(VI) at the liquid liquid interface. Electrochemistry Communications, 2005, 7, 976-982.	2.3	29
67	Electrochemical behaviour of denatured haemoglobin at the liquid liquid interface. Electrochemistry Communications, 2010, 12, 335-337.	2.3	29
68	Achievement of Prolonged Oxygen Detection in Room-Temperature Ionic Liquids on Mechanically Polished Platinum Screen-Printed Electrodes. Analytical Chemistry, 2016, 88, 5104-5111.	3.2	29
69	Permselective Behaviour at Overoxidised Poly[1-(2-carboxyethyl)pyrrole] Films: Dopamine Versus Ascorbate. Analytical Communications, 1997, 34, 241-244.	2.2	28
70	Voltammetric behaviour at gold electrodes immersed in the BCR sequential extraction scheme media. Analytica Chimica Acta, 2004, 502, 195-206.	2.6	28
71	Voltammetry of proteins at liquid–liquid interfaces. Annual Reports on the Progress of Chemistry Section C, 2013, 109, 167.	4.4	28
72	Removal of arsenic from alkaline process waters of gold cyanidation by use of î ³ -Fe2O3@ZrO2 nanosorbents. Hydrometallurgy, 2017, 174, 71-77.	1.8	28

#	Article	IF	CITATIONS
73	Calixarene-facilitated transfer of alkali metal ions across the polarised liquid–liquid interface. New Journal of Chemistry, 2000, 24, 149-154.	1.4	27
74	Array of water room temperature ionic liquid micro-interfaces. Electrochemistry Communications, 2011, 13, 477-479.	2.3	27
75	Ion-Transfer Voltammetric Behavior of Protein Digests at Liquid Liquid Interfaces. Analytical Chemistry, 2010, 82, 258-264.	3.2	26
76	Electroanalytical Behavior of Poly- <scp>I</scp> -Lysine Dendrigrafts at the Interface between Two Immiscible Electrolyte Solutions. Analytical Chemistry, 2012, 84, 5693-5699.	3.2	26
77	An Electrochemical Sensing Platform Based on Liquid–Liquid Microinterface Arrays Formed in Laser-Ablated Glass Membranes. Analytical Chemistry, 2016, 88, 2596-2604.	3.2	26
78	A lithium iron phosphate reference electrode for ionic liquid electrolytes. Electrochemistry Communications, 2018, 93, 148-151.	2.3	26
79	Electrochemistry of proteins at the interface between two immiscible electrolyte solutions. Current Opinion in Electrochemistry, 2018, 12, 27-32.	2.5	26
80	Electrochemical Behavior of Chlorine on Platinum Microdisk and Screen-Printed Electrodes in a Room Temperature Ionic Liquid. Journal of Physical Chemistry C, 2015, 119, 23572-23579.	1.5	25
81	Selective silver ion transfer voltammetry at the polarised liquid liquid interface. Analyst, The, 2003, 128, 1187.	1.7	24
82	Interaction of acridine-calix[4] arene with DNA at the electrified liquid liquid interface. Electrochimica Acta, 2010, 55, 3348-3354.	2.6	24
83	Stripping voltammetric detection of insulin at liquid–liquid microinterfaces in the presence of bovine albumin. Analyst, The, 2013, 138, 6192.	1.7	24
84	Fingerprinting the tertiary structure of electroadsorbed lysozyme at soft interfaces by electrostatic spray ionization mass spectrometry. Chemical Communications, 2014, 50, 11829-11832.	2.2	24
85	Development of Surface-Modified Microelectrode Arrays for the Electrochemical Detection of Dihydrogen Phosphate. Electroanalysis, 2005, 17, 392-399.	1.5	23
86	Underpotential Deposition of Copper at Mercaptoalkane Sulfonate-Coated Polycrystalline Gold. Electroanalysis, 2001, 13, 751-754.	1.5	22
87	Electrochemical Characterization of an Oleylâ€coated Magnetite Nanoparticleâ€Modified Electrode. ChemElectroChem, 2014, 1, 1211-1218.	1.7	22
88	Reactive Conjugated Polymers: Synthesis, Modification, and Electrochemical Properties of Polypentafluorophenylacetylene (Co)Polymers. Macromolecular Rapid Communications, 2017, 38, 1600450.	2.0	22
89	Electrochemical activity of phenolic calixarenes. Electrochemistry Communications, 2003, 5, 68-72.	2.3	21
90	The performance of differential pulse stripping voltammetry at micro-liquid–liquid interface arrays. Journal of Electroanalytical Chemistry, 2010, 641, 7-13.	1.9	21

#	Article	IF	Citations
91	Chronoamperometric response at nanoscale liquid–liquid interface arrays. Electrochimica Acta, 2013, 101, 177-185.	2.6	21
92	Investigation of a solvent-cast organogel to form a liquid-gel microinterface array for electrochemical detection of lysozyme. Analytica Chimica Acta, 2015, 893, 34-40.	2.6	21
93	Electrochemistry of dopamine at the polarised liquid liquid interface facilitated by an homo-oxo-calix[3] arene ionophore. Journal of Electroanalytical Chemistry, 2008, 622, 109-114.	1.9	20
94	Study of electrochemical phosphate sensing systems: Spectrometric, potentiometric and voltammetric evaluation. Electrochimica Acta, 2009, 54, 1919-1924.	2.6	20
95	Electrochemical Characterisation of Nanoscale Liquid Liquid Interfaces Located at Focused Ion Beamâ€Milled Silicon Nitride Membranes. ChemElectroChem, 2015, 2, 98-105.	1.7	20
96	Visualization of Diffusion within Nanoarrays. Analytical Chemistry, 2016, 88, 6689-6695.	3.2	20
97	Calix[4]Arenes in the partial cone conformation as ionophores in silver ion-selective electrodes. Electroanalysis, 1997, 9, 311-315.	1.5	19
98	Electrochemical study of electroactive reagent retention in overoxidised polypyrrole films. Analytica Chimica Acta, 1999, 402, 157-167.	2.6	19
99	Apparent enhanced underpotential voltammetry of lead(ii) at a spontaneously adsorbed monolayer-coated gold electrode. Analyst, The, 1999, 124, 1797-1802.	1.7	19
100	Electrochemical Overoxidation of Polyindole and Its Cation-Permselective Behavior. Electroanalysis, 2004, 16, 979-987.	1.5	19
101	Microelectrochemical Systems on Silicon Chips for the Detection of Pollutants in Seawater. Electroanalysis, 2011, 23, 147-155.	1.5	19
102	An ASIC-based system for stripping voltammetric determination of trace metals. Sensors and Actuators B: Chemical, 1996, 34, 466-470.	4.0	18
103	Characterization of Protein-Facilitated Ion-Transfer Mechanism at a Polarized Aqueous/Organic Interface. Journal of Physical Chemistry B, 2019, 123, 7436-7444.	1.2	18
104	Optimisation of the conditions for stripping voltammetric analysis at liquid–liquid interfaces supported at micropore arrays: a computational simulation. Analytical and Bioanalytical Chemistry, 2010, 398, 1625-1631.	1.9	17
105	Impact of a Surfactant on the Electroactivity of Proteins at an Aqueous–Organogel Microinterface Array. Analytical Chemistry, 2013, 85, 1389-1394.	3.2	17
106	Zinc Oxide Nanoparticles as Antifouling Materials for the Electrochemical Detection of Methylparaben. ChemElectroChem, 2021, 8, 187-194.	1.7	17
107	Bioanalytical Applications of Electrochemistry at Liquid-Liquid Microinterfaces. Electroanalytical Chemistry, A Series of Advances, 2013, , 105-178.	1.7	17
108	Haemoglobin unfolding studies at the liquid–liquid interface. Electrochemistry Communications, 2011, 13, 723-725.	2.3	16

#	Article	IF	Citations
109	Electroanalytical Ventures at Nanoscale Interfaces Between Immiscible Liquids. Annual Review of Analytical Chemistry, 2016, 9, 145-161.	2.8	16
110	Adsorption and Unfolding of Lysozyme at a Polarized Aqueous–Organic Liquid Interface. Journal of Physical Chemistry B, 2016, 120, 3100-3112.	1.2	16
111	Theory of electrochemistry at miniaturised interfaces between two immiscible electrolyte solutions. Current Opinion in Electrochemistry, 2017, 1, 66-72.	2.5	16
112	Collisional electrochemistry of laser-ablated gold nanoparticles by electrocatalytic oxidation of glucose. Electrochemistry Communications, 2017, 77, 24-27.	2.3	16
113	Interfacial Behavior of p-Hexasulfonato-calix[6]arene at Glassy Carbon Electrodes in Alkaline Aqueous Solution Studied by Voltammetric Methods. Langmuir, 2002, 18, 9447-9452.	1.6	15
114	Detection of perfluorooctane sulfonate by ion-transfer stripping voltammetry at an array of microinterfaces between two immiscible electrolyte solutions. Analyst, The, 2020, 145, 5776-5786.	1.7	15
115	Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes. Analytica Chimica Acta, 2004, 511, 137-143.	2.6	14
116	Removal of arsenic from gold cyanidation process waters by use of cerium-based magnetic adsorbents. Minerals Engineering, 2018, 122, 84-90.	1.8	14
117	Studies of the application of overoxidised polypyrrole films in anodic stripping voltammetry. Analytical Communications, 1998, 35, 61-62.	2.2	13
118	Electrodeposition of the bismuth-based superconductor Bi2Sr2CaCu2O8 + \hat{l} . Electrochimica Acta, 1996, 41, 1629-1632.	2.6	12
119	Square-Wave Voltammetric Transfer of Silver Ions Across the Water 1,2-Dichloroethane Interface. Electroanalysis, 2004, 16, 1227-1231.	1.5	12
120	Fabrication and Electrochemical Characterization of Micro- and Nanoelectrode Arrays for Sensor Applications. Journal of Physics: Conference Series, 2011, 307, 012052.	0.3	12
121	Electroanalytical Opportunities Derived from Ion Transfer at Interfaces between Immiscible Electrolyte Solutions. Australian Journal of Chemistry, 2016, 69, 1016.	0.5	12
122	Detection of Prostate Specific Membrane Antigen at Picomolar Levels Using Biocatalysis Coupled to Assisted Ion Transfer Voltammetry at a Liquid-Organogel Microinterface Array. Analytical Chemistry, 2016, 88, 11302-11305.	3.2	12
123	Investigation of modified nanopore arrays using FIB/SEM tomography. Faraday Discussions, 2018, 210, 113-130.	1.6	12
124	Electrochemical oxidation of a tetraester calix[4] arene. Electrochemistry Communications, 2001, 3, 24-27.	2.3	11
125	Underpotential Deposition and Stripping of Lead at Disorganized Monolayer-Modified Gold Electrodes. Electroanalysis, 2005, 17, 1816-1821.	1.5	11
126	Assessment of ion transfer amperometry at liquid–liquid interfaces for detection in CE. Electrophoresis, 2009, 30, 3366-3371.	1.3	11

#	Article	IF	Citations
127	Flow-injection amperometry at microfabricated silicon-based μ-liquid–liquid interface arrays. Electrochimica Acta, 2010, 55, 4234-4239.	2.6	11
128	Electrochemical properties of polymeric nanopatterned electrodes. Electrochemistry Communications, 2007, 9, 1833-1839.	2.3	10
129	Potentiometric characterisation of a dual-stream electrochemical microfluidic device. Microfluidics and Nanofluidics, 2009, 6, 231-240.	1.0	10
130	Potentiometric Investigation of Protonation Reactions at Aqueousâ-'Aqueous Boundaries within a Dual-Stream Microfluidic Structure. Langmuir, 2010, 26, 18526-18533.	1.6	10
131	Impact of Surface Nano-textured Stainless Steel Prepared by Focused Ion Beam on Endothelial Cell Growth. Journal of Nanoscience and Nanotechnology, 2013, 13, 5283-5290.	0.9	10
132	Paper-Based System for Ion Transfer Across the Liquid–Liquid Interface. Analytical Chemistry, 2018, 90, 8727-8731.	3.2	10
133	lonophore/ionomer films on glassy carbon electrodes for accumulation voltammetry. Investigation of a lead(II) ionophore. Analyst, The, 1994, 119, 287.	1.7	9
134	Interaction of surface-attached haemoglobin with hydrophobic anions monitored by on-line acoustic wave detector. Bioelectrochemistry, 2010, 79, 6-10.	2.4	9
135	Finite-element simulations of the influence of pore wall adsorption on cyclic voltammetry of ion transfer across a liquid–liquid interface formed at a micropore. Physical Chemistry Chemical Physics, 2012, 14, 2494.	1.3	9
136	Electrochemically Induced Formation of Cytochrome <i>c</i> Oligomers at Soft Interfaces. ChemElectroChem, 2017, 4, 898-904.	1.7	9
137	Secondary Structural Changes in Proteins as a Result of Electroadsorption at Aqueous–Organogel Interfaces. Langmuir, 2019, 35, 5821-5829.	1.6	9
138	Investigation of Potential Distribution and the Influence of Ion Complexation on Diffusion Potentials at Aqueous and Aqueous Boundaries within a Dual-Stream Microfluidic Structure. Analytical Chemistry, 2009, 81, 8373-8379.	3.2	8
139	Nanofabrication of Robust Nanoelectrodes for Electrochemical Applications. ECS Transactions, 2010, 28, 29-37.	0.3	8
140	Ionâ€Transfer Electrochemistry of Rat Amylin at the Water–Organogel Microinterface Array and Its Selective Detection in a Protein Mixture. Chemistry - an Asian Journal, 2013, 8, 2096-2101.	1.7	8
141	Reversible Integration of Microfluidic Devices with Microelectrode Arrays for Neurobiological Applications. BioNanoScience, 2014, 4, 263-275.	1.5	8
142	Voidâ€Assisted Ionâ€Paired Proton Transfer at Water–Ionic Liquid Interfaces. Angewandte Chemie - International Edition, 2015, 54, 14903-14906.	7.2	8
143	Electrochemically controlled cocrystallisation of caffeine:1-hydroxy-2-naphthoic acid. CrystEngComm, 2021, 24, 48-51.	1.3	8
144	Incorporation of hydroxamic acid ligands into Nafion film electrodes. Analyst, The, 1993, 118, 355.	1.7	7

#	Article	IF	CITATIONS
145	Application of the Disorganized Monolayer Gold Electrode to Copper Determination in White Wine. Analytical Letters, 2004, 37, 591-602.	1.0	7
146	Characterization of the Electrochemical Behavior of Gastrointestinal Fluids Using a Multielectrode Sensor Probe. IEEE Transactions on Biomedical Engineering, 2011, 58, 2521-2527.	2.5	7
147	Electroactivity of Aptamer at Soft Microinterface Arrays. Analytical Chemistry, 2018, 90, 8470-8477.	3.2	7
148	Analysis of inorganic solids by laser ablation inductively coupled plasma spectrometry. Analytical Proceedings, 1992, 29, 23.	0.4	6
149	Synthesis and electrochemical study of a tetra(ester thiophene)calix[4]arene: ionic recognition and electropolymerisation behaviour. Journal of Materials Chemistry, 2002, 12, 2665-2670.	6.7	6
150	Study of the Effects of Nonlinear Potential Sweeps on Voltammetry. Electroanalysis, 2009, 21, 68-76.	1.5	6
151	Macromolecular sensing at the liquid-liquid interface. Journal of Physics: Conference Series, 2011, 307, 012055.	0.3	6
152	Electrochemical Characterization of Regularly-Aligned Nanopore Array Membranes Filled with Electrolyte Solutions and Their Use for Detection of Nucleic Acid Hybridization. ECS Transactions, 2011, 35, 29-44.	0.3	6
153	Behavior of Lysozyme at the Electrified Water/Room Temperature Ionic Liquid Interface. Chemistry - an Asian Journal, 2012, 7, 2559-2561.	1.7	6
154	Electrochemistry of catalase at a liquid liquid micro-interface array. Bioelectrochemistry, 2021, 138, 107694.	2.4	6
155	STIR-BAR ADSORPTIVE EXTRACTION ON A POLY(TETRAFLUOROETHYLENE) COATED STIR-BAR: PRELIMINARY EVALUATION USING PHENANTHRENE. Analytical Letters, 2002, 35, 1429-1435.	1.0	5
156	Electrochemical behaviour at a liquid-organogel microinterface array of fucoidan extracted from algae. Analyst, The, 2017, 142, 3194-3202.	1.7	5
157	Electrochemical Behavior and Detection of Sulfated Sucrose at a Liquid Organogel Microinterface Array. Analytical Chemistry, 2018, 90, 10256-10262.	3.2	5
158	Sensing via Voltammetric Ion-Transfer at an Aqueous-Organogel Micro-Interface Array. Sensor Letters, 2011, 9, 721-724.	0.4	5
159	Immobilisation of antibody on microporous silicon membranes. Mikrochimica Acta, 2009, 166, 349-353.	2.5	4
160	Removal of arsenic from gold processing circuits by use of novel magnetic nanoparticles. Canadian Metallurgical Quarterly, 2018, 57, 399-404.	0.4	4
161	Ion Transfer Voltammetry with an Electrochemical Pen. Analytical Chemistry, 2020, 92, 15997-16004.	3.2	3
162	Ion-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format. Journal of Electroanalytical Chemistry, 2022, 909, 116113.	1.9	3

#	Article	IF	CITATIONS
163	Electrochemical signature of hen egg white lysozyme at the glycerol-modified liquid-liquid interface. Electrochimica Acta, 2016, 221, 62-69.	2.6	2
164	Structural Changes in Insulin at a Soft Electrochemical Interface. Analytical Chemistry, 2021, 93, 9094-9102.	3.2	2
165	Nanoelectrode arrays for electroanalysis. Frontiers of Nanoscience, 2021, 18, 49-86.	0.3	2
166	Research and development topics in Analytical Chemistry. Analytical Proceedings, 1993, 30, 129.	0.4	1
167	Performance of micromachined quartz gravimetric sensors upon electrochemical adsorption of monolayers. , 2008, , .		1
168	Correlative Microscopy Study of FIB Patterned Stainless Steel Surfaces as Novel Nano-Structured Stents for Cardiovascular Applications. Materials Research Society Symposia Proceedings, 2012, 1466, 26.	0.1	1
169	Voidâ€Assisted Ionâ€Paired Proton Transfer at Water–Ionic Liquid Interfaces. Angewandte Chemie, 2015, 127, 15116-15119.	1.6	1
170	Liquid / Liquid Interface-Based Electrochemical Sensing of Ractopamine and Salbutamol. Procedia Chemistry, 2016, 20, 76-80.	0.7	1
171	lonophore-Assisted Electrochemistry of Neutral Molecules: Oxidation of Hydrogen in an Ionic Liquid Electrolyte. Journal of Physical Chemistry Letters, 2019, 10, 6910-6914.	2.1	1
172	Amperometric Ion Sensing Approaches at Liquid/Liquid Interfaces for Inorganic, Organic and Biological Ions. RSC Detection Science, 2015, , 296-340.	0.0	1
173	Ubiquinone electrochemistry in analysis and sensing. Electrochemical Science Advances, 2023, 3, .	1.2	1
174	Pharmaceutical modulation of diffusion potentials at aqueous–aqueous boundaries under laminar flow conditions. Electrophoresis, 2011, 32, 844-849.	1.3	0
175	Electrochemical Biosensing: From the Bench to the Real World. ChemElectroChem, 2017, 4, 751-752.	1.7	0
176	Evaluation of interfacial sulfate complexation by a bis-thiourea ionophore at water-organic interfaces using microelectrochemistry and high resolution mass spectrometry. Microchemical Journal, 2017, 131, 36-42.	2.3	0
177	Versatile electrochemical approaches. Analyst, The, 2020, 145, 5696-5698.	1.7	0
178	Comparison of Hydrothermally-Grown vs Electrodeposited Cobalt Sulfide Nanostructures as Modified Electrodes for Oxygen Evolution and Electrochemical Sensing Applications. Journal of the Electrochemical Society, 2022, 169, 056505.	1.3	0