Thomas J Mozdzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2899341/publications.pdf Version: 2024-02-01

THOMAS LMOZDZED

#	Article	IF	CITATIONS
1	Phragmites australis management in the United States: 40 years of methods and outcomes. AoB PLANTS, 2014, 6, .	2.3	149
2	Twelve testable hypotheses on the geobiology of weathering. Geobiology, 2011, 9, 140-165.	2.4	133
3	Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. Aquatic Botany, 1998, 62, 161-169.	1.6	126
4	Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis. Frontiers in Plant Science, 2017, 8, 1833.	3.6	123
5	Ecophysiological differences between genetic lineages facilitate the invasion of nonâ€native <i>Phragmites australis</i> in North American Atlantic coast wetlands. Journal of Ecology, 2010, 98, 451-458.	4.0	119
6	Tidal marsh plant responses to elevated <scp><co< scp=""></co<></scp> ₂ , nitrogen fertilization, and sea level rise. Global Change Biology, 2013, 19, 1495-1503.	9.5	116
7	Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs. Soil Biology and Biochemistry, 2016, 98, 85-94.	8.8	113
8	Tidal influences on carbon assimilation by a salt marsh. Environmental Research Letters, 2008, 3, 044010.	5.2	91
9	Jack-and-Master Trait Responses to Elevated CO2 and N: A Comparison of Native and Introduced Phragmites australis. PLoS ONE, 2012, 7, e42794.	2.5	76
10	Global-change effects on early-stage decomposition processes in tidal wetlands – implications from a global survey using standardized litter. Biogeosciences, 2018, 15, 3189-3202.	3.3	73
11	An invasive wetland grass primes deep soil carbon pools. Global Change Biology, 2017, 23, 2104-2116.	9.5	66
12	Nitrogen Uptake by Native and Invasive Temperate Coastal Macrophytes: Importance of Dissolved Organic Nitrogen. Estuaries and Coasts, 2010, 33, 784-797.	2.2	64
13	Saltmarsh plant responses to eutrophication. Ecological Applications, 2016, 26, 2649-2661.	3.8	60
14	Global change accelerates carbon assimilation by a wetland ecosystem engineer. Environmental Research Letters, 2015, 10, 115006.	5.2	57
15	Increased Methane Emissions by an Introduced Phragmites australis Lineage under Global Change. Wetlands, 2013, 33, 609-615.	1.5	51
16	Global networks for invasion science: benefits, challenges and guidelines. Biological Invasions, 2017, 19, 1081-1096.	2.4	44
17	Deep rooting and global change facilitate spread of invasive grass. Biological Invasions, 2016, 18, 2619-2631.	2.4	38
18	Efficacy of Imazapyr and Glyphosate in the Control of Non-Native Phragmites australis. Restoration Ecology, 2008, 16, 221-224.	2.9	37

Thomas J Mozdzer

#	Article	IF	CITATIONS
19	The concentration distribution and pollution assessment of heavy metals in surface sediments of the Bohai Bay, China. Marine Pollution Bulletin, 2019, 149, 110497.	5.0	34
20	Effects of cadmium and zinc on larval growth and survival in the ground beetle, Pterostichus oblongopunctatus. Environment International, 2003, 28, 737-742.	10.0	26
21	Belowground advantages in construction cost facilitate a cryptic plant invasion. AoB PLANTS, 2014, 6, .	2.3	25
22	Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biological Invasions, 2016, 18, 2635-2647.	2.4	25
23	Not All Nitrogen Is Created Equal: Differential Effects of Nitrate and Ammonium Enrichment in Coastal Wetlands. BioScience, 2020, 70, 1108-1119.	4.9	25
24	Plant species determine tidal wetland methane response to sea level rise. Nature Communications, 2020, 11, 5154.	12.8	24
25	Allometry data and equations for coastal marsh plants. Ecology, 2016, 97, 3554-3554.	3.2	22
26	Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora. Marine Ecology - Progress Series, 2011, 433, 43-52.	1.9	21
27	Nitrogen uptake kinetics and saltmarsh plant responses to global change. Scientific Reports, 2018, 8, 5393.	3.3	20
28	Livestock as a potential biological control agent for an invasive wetland plant. PeerJ, 2014, 2, e567.	2.0	20
29	Physiological responses of Spartina alterniflora to varying environmental conditions in Virginia marshes. Hydrobiologia, 2011, 669, 167-181.	2.0	18
30	Complementary responses of morphology and physiology enhance the standâ€scale production of a model invasive species under elevated <scp>CO</scp> ₂ and nitrogen. Functional Ecology, 2018, 32, 1784-1796.	3.6	17
31	Latitudinal variation in the availability and use of dissolved organic nitrogen in Atlantic coast salt marshes. Ecology, 2014, 95, 3293-3303.	3.2	14
32	Nitrogen enrichment alters carbon fluxes in a New England salt marsh. Ecosystem Health and Sustainability, 2018, 4, 277-287.	3.1	14
33	Unraveling the Gordian Knot: Eight testable hypotheses on the effects of nutrient enrichment on tidal wetland sustainability. Science of the Total Environment, 2020, 743, 140420.	8.0	14
34	Nutrient foraging strategies are associated with productivity and population growth in forest shrubs. Annals of Botany, 2017, 119, mcw271.	2.9	12
35	Evidence does not support the targeting of cryptic invaders at the subspecies level using classical biological control: the example of Phragmites. Biological Invasions, 2019, 21, 2529-2541.	2.4	11
36	Contrasting trait responses to latitudinal climate variation in two lineages of an invasive grass. Biological Invasions, 2016, 18, 2649-2660.	2.4	8

Thomas J Mozdzer

#	Article	IF	CITATIONS
37	Suitability of Wild Phragmites australis as Bio-Resource: Tissue Quality and Morphology of Populations from Three Continents. Resources, 2020, 9, 143.	3.5	4
38	Rapid recovery of carbon cycle processes after the cessation of chronic nutrient enrichment. Science of the Total Environment, 2021, 750, 140927.	8.0	4
39	Interspecific Competition is Prevalent and Stabilizes Plant Production in a Brackish Marsh Facing Sea Level Rise. Estuaries and Coasts, 2022, 45, 1646-1655.	2.2	4
40	Responses of stomatal features and photosynthesis to porewater N enrichment and elevated atmospheric CO 2 in Phragmites australis , the common reed. American Journal of Botany, 2021, 108, 718-725.	1.7	2