Satoshi H Namekawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2899263/publications.pdf

Version: 2024-02-01

68 papers

3,158 citations

30 h-index 52 g-index

73 all docs

73 docs citations

times ranked

73

3741 citing authors

#	Article	IF	CITATIONS
1	Retrotransposons in the Mammalian Male Germline. Sexual Development, 2022, 16, 404-422.	2.0	3
2	Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cellular and Molecular Life Sciences, 2022, 79, 18.	5.4	21
3	UHRF1 establishes crosstalk between somatic and germ cells in male reproduction. Cell Death and Disease, 2022, 13, 377.	6.3	7
4	Isolation of Murine Spermatogenic Cells using a Violet-Excited Cell-Permeable DNA Binding Dye. Journal of Visualized Experiments, 2021, , .	0.3	3
5	Meiosis-specific ZFP541 repressor complex promotes developmental progression of meiotic prophase towards completion during mouse spermatogenesis. Nature Communications, 2021, 12, 3184.	12.8	17
6	RNF8 is not required for histone-to-protamine exchange in spermiogenesis. Biology of Reproduction, 2021, 105, 1154-1159.	2.7	5
7	Cancer testis antigens and genomic instability: More than immunology. DNA Repair, 2021, 108, 103214.	2.8	14
8	The Initiation of Meiotic Sex Chromosome Inactivation Sequesters DNA Damage Signaling from Autosomes in Mouse Spermatogenesis. Current Biology, 2020, 30, 408-420.e5.	3.9	44
9	Licensing meiotic progressionâ€. Biology of Reproduction, 2020, 103, 10-12.	2.7	O
10	Endogenous retroviruses drive species-specific germline transcriptomes in mammals. Nature Structural and Molecular Biology, 2020, 27, 967-977.	8.2	60
11	Super-enhancer switching drives a burst in gene expression at the mitosis-to-meiosis transition. Nature Structural and Molecular Biology, 2020, 27, 978-988.	8.2	38
12	BRUCE preserves genomic stability in the male germline of mice. Cell Death and Differentiation, 2020, 27, 2402-2416.	11.2	5
13	Pioneering meiotic recombination. Genes and Development, 2020, 34, 395-397.	5.9	1
14	FANCD2 is required for the repression of germline transposable elements. Reproduction, 2020, 159, 659-668.	2.6	13
15	A rapidly evolved domain, the SCML2 DNA-binding repeats, contributes to chromatin binding of mouse SCML2â€. Biology of Reproduction, 2019, 100, 409-419.	2.7	5
16	UHRF1 suppresses retrotransposons and cooperates with PRMT5 and PIWI proteins in male germ cells. Nature Communications, 2019, 10, 4705.	12.8	56
17	Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development. Nature Structural and Molecular Biology, 2019, 26, 175-184.	8.2	92
18	XY oocytes of sex-reversed females with a Sry mutation deviate from the normal developmental process beyond the mitotic stageâ€. Biology of Reproduction, 2019, 100, 697-710.	2.7	5

#	Article	IF	Citations
19	Polycomb protein SCML2 facilitates H3K27me3 to establish bivalent domains in the male germline. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4957-4962.	7.1	57
20	CHEK1 coordinates DNA damage signaling and meiotic progression in the male germline of mice. Human Molecular Genetics, 2018, 27, 1136-1149.	2.9	26
21	Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis. Nucleic Acids Research, 2018, 46, 593-608.	14.5	100
22	Epigenomic and single-cell profiling of human spermatogonial stem cells. Stem Cell Investigation, 2018, 5, 11-11.	3.0	2
23	Chromosome Spread Analyses of Meiotic Sex Chromosome Inactivation. Methods in Molecular Biology, 2018, 1861, 113-129.	0.9	14
24	RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genetics, 2018, 14, e1007233.	3.5	45
25	SCML2 promotes heterochromatin organization in late spermatogenesis. Journal of Cell Science, 2018, 131, .	2.0	20
26	Polycomb directs timely activation of germline genes in spermatogenesis. Genes and Development, 2017, 31, 1693-1703.	5.9	52
27	Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function. Scientific Reports, 2017, 7, 45626.	3.3	32
28	Fancb deficiency impairs hematopoietic stem cell function. Scientific Reports, 2016, 5, 18127.	3.3	14
29	Elucidation of the Fanconi Anemia Protein Network in Meiosis and Its Function in the Regulation of Histone Modifications. Cell Reports, 2016, 17, 1141-1157.	6.4	46
30	Loss of <i>Faap20</i> Causes Hematopoietic Stem and Progenitor Cell Depletion in Mice Under Genotoxic Stress. Stem Cells, 2015, 33, 2320-2330.	3.2	7
31	BAZ1B is dispensable for H2AX phosphorylation on Tyrosine 142 during spermatogenesis. Biology Open, 2015, 4, 873-884.	1.2	12
32	SCML2 Establishes the Male Germline Epigenome through Regulation of Histone H2A Ubiquitination. Developmental Cell, 2015, 32, 574-588.	7.0	109
33	FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis. Human Molecular Genetics, 2015, 24, 5234-5249.	2.9	53
34	Functional significance of the sex chromosomes during spermatogenesis. Reproduction, 2015, 149, R265-R277.	2.6	17
35	<i>Xist</i> imprinting is promoted by the hemizygous (unpaired) state in the male germ line. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14415-14422.	7.1	22
36	Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. BMC Biology, 2015, 13, 53.	3.8	64

#	Article	IF	CITATIONS
37	BRCA1 establishes DNA damage signaling and pericentric heterochromatin of the X chromosome in male meiosis. Journal of Cell Biology, 2014, 205, 663-675.	5.2	74
38	Slide Preparation Method to Preserve Three-dimensional Chromatin Architecture of Testicular Germ Cells. Journal of Visualized Experiments, 2014, , e50819.	0.3	12
39	MEK/ERK signaling directly and indirectly contributes to the cyclical self-renewal of spermatogonial stem cells. Stem Cells, 2013, 31, 2517-2527.	3.2	81
40	The great escape. Epigenetics, 2013, 8, 887-892.	2.7	27
41	RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Genes and Development, 2012, 26, 2737-2748.	5.9	108
42	The RNase III Enzyme DROSHA Is Essential for MicroRNA Production and Spermatogenesis. Journal of Biological Chemistry, 2012, 287, 25173-25190.	3.4	168
43	Human postmeiotic sex chromatin and its impact on sex chromosome evolution. Genome Research, 2012, 22, 827-836.	5.5	50
44	Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways. Cellular and Molecular Life Sciences, 2012, 69, 2559-2572.	5.4	88
45	Detection of nascent RNA, single-copy DNA and protein localization by immunoFISH in mouse germ cells and preimplantation embryos. Nature Protocols, 2011, 6, 270-284.	12.0	59
46	X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Human Genetics, 2011, 130, 265-280.	3.8	58
47	MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells. Genes and Development, 2011, 25, 959-971.	5.9	156
48	Tsx Produces a Long Noncoding RNA and Has General Functions in the Germline, Stem Cells, and Brain. PLoS Genetics, 2011, 7, e1002248.	3.5	156
49	Two-Step Imprinted X Inactivation: Repeat versus Genic Silencing in the Mouse. Molecular and Cellular Biology, 2010, 30, 3187-3205.	2.3	115
50	Mice Lacking Alkbh1 Display Sex-Ratio Distortion and Unilateral Eye Defects. PLoS ONE, 2010, 5, e13827.	2.5	57
51	XY and ZW: Is Meiotic Sex Chromosome Inactivation the Rule in Evolution?. PLoS Genetics, 2009, 5, e1000493.	3.5	28
52	Telomeric RNAs Mark Sex Chromosomes in Stem Cells. Genetics, 2009, 182, 685-698.	2.9	45
53	Coprinus cinereus Mer3 is required for synaptonemal complex formation during meiosis. Chromosoma, 2009, 118, 127-139.	2.2	19
54	Interaction between Lim15/Dmc1 and the homologue of the large subunit of CAFâ€1 – a molecular link between recombination and chromatin assembly during meiosis. FEBS Journal, 2008, 275, 2032-2041.	4.7	8

#	Article	IF	CITATIONS
55	Role of Noncoding RNA in X-Inactivation from Gamete to Embryo Biology of Reproduction, 2008, 78, 160-160.	2.7	O
56	A Mammal-Specific Doublesex Homolog Associates with Male Sex Chromatin and Is Required for Male Meiosis. PLoS Genetics, 2007, 3, e62.	3.5	54
57	Sex chromosome silencing in the marsupial male germ line. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9730-9735.	7.1	83
58	Proliferating cell nuclear antigen (PCNA) interacts with a meiosis-specific RecA homologues, Lim15/Dmc1, but does not stimulate its strand transfer activity. Biochemical and Biophysical Research Communications, 2007, 352, 836-842.	2.1	10
59	Sumoylation of a meiosis-specific RecA homolog, Lim15/Dmc1, via interaction with the small ubiquitin-related modifier (SUMO)-conjugating enzyme Ubc9. FEBS Journal, 2006, 273, 4003-4012.	4.7	20
60	Postmeiotic Sex Chromatin in the Male Germline of Mice. Current Biology, 2006, 16, 660-667.	3.9	370
61	Knockdown of LIM15/DMC1 in the mushroom Coprinus cinereus by double-stranded RNA-mediated gene silencing. Microbiology (United Kingdom), 2005, 151, 3669-3678.	1.8	76
62	DNA topoisomerase II interacts with Lim15/Dmc1 in meiosis. Nucleic Acids Research, 2005, 33, 5809-5818.	14.5	21
63	Expression of flap endonuclease-1 during meiosis in a basidiomycete, Coprinus cinereus. Fungal Genetics and Biology, 2004, 41, 493-500.	2.1	7
64	Coprinus cinereus DNA ligase I during meiotic development. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2003, 1627, 47-55.	2.4	9
65	DNA ligase IV from a basidiomycete, Coprinus cinereus, and its expression during meiosis. Microbiology (United Kingdom), 2003, 149, 2119-2128.	1.8	11
66	A novel DNA polymerase homologous to Escherichia coli DNA polymerase I from a higher plant, rice (Oryza sativa L.). Nucleic Acids Research, 2002, 30, 1585-1592.	14.5	63
67	Leucine aminopeptidase during meiotic development. FEBS Journal, 2002, 269, 826-832.	0.2	19
68	Strand Exchange Reaction in Vitro and DNA-Dependent ATPase Activity of Recombinant LIM15/DMC1 and RAD51 Proteins from Coprinus cinereus. Biochemical and Biophysical Research Communications, 2001, 285, 92-97.	2.1	24