List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2899039/publications.pdf Version: 2024-02-01

81839 88593 5,794 118 39 70 h-index citations g-index papers 122 122 122 4664 docs citations times ranked citing authors all docs

GU FENC

#	Article	IF	CITATIONS
1	Toward the sustainable use of mineral phosphorus fertilizers for crop production in China: From primary resource demand to final agricultural use. Science of the Total Environment, 2022, 804, 150183.	3.9	27
2	Evaluating the effects of agricultural inputs on the soil quality of smallholdings using improved indices. Catena, 2022, 209, 105838.	2.2	21
3	Simulated root exudates stimulate the abundance of Saccharimonadales to improve the alkaline phosphatase activity in maize rhizosphere. Applied Soil Ecology, 2022, 170, 104274.	2.1	49
4	Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science, 2022, 27, 402-411.	4.3	88
5	Using knowledge-based management for sustainable phosphorus use in China. Science of the Total Environment, 2022, 814, 152739.	3.9	10
6	C:P stoichiometric imbalance between soil and microorganisms drives microbial phosphorus turnover in the rhizosphere. Biology and Fertility of Soils, 2022, 58, 421-433.	2.3	18
7	Twoâ€component system in <i>Rahnella aquatilis</i> is impacted by the hyphosphere of the arbuscular mycorrhizal fungus <i>Rhizophagus irregularis</i> . Environmental Microbiology Reports, 2022, 14, 119-129.	1.0	4
8	Two isolates of Rhizophagus irregularis select different strategies for improving plants phosphorus uptake at moderate soil P availability. Geoderma, 2022, 421, 115910.	2.3	14
9	Arbuscular mycorrhizal fungi have a greater role than root hairs of maize for priming the rhizosphere microbial community and enhancing rhizosphere organic P mineralization. Soil Biology and Biochemistry, 2022, 171, 108713.	4.2	18
10	Synergies in sustainable phosphorus use and greenhouse gas emissions mitigation in China: Perspectives from the entire supply chain from fertilizer production to agricultural use. Science of the Total Environment, 2022, 838, 155997.	3.9	3
11	Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition. Journal of Ecology, 2021, 109, 3171-3181.	1.9	35
12	Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytologist, 2021, 230, 304-315.	3.5	167
13	Mycorrhizal fungi maintain plant community stability by mitigating the negative effects of nitrogen deposition on subordinate species in Central Asia. Journal of Vegetation Science, 2021, 32, .	1.1	13
14	Soil microbial biomass phosphorus can serve as an index to reflect soil phosphorus fertility. Biology and Fertility of Soils, 2021, 57, 657-669.	2.3	27
15	Field management practices drive ecosystem multifunctionality in a smallholder-dominated agricultural system. Agriculture, Ecosystems and Environment, 2021, 313, 107389.	2.5	34
16	Soil phosphorus availability determines the preference for direct or mycorrhizal phosphorus uptake pathway in maize. Geoderma, 2021, 403, 115261.	2.3	24
17	Arbuscular mycorrhizal fungi alleviate the negative effects of increases in phosphorus (P) resource diversity on plant community structure by improving P resource utilization. Plant and Soil, 2021, 461, 295-307.	1.8	4
18	Arbuscular Mycorrhizal Fungi Interactions in the Rhizosphere. Rhizosphere Biology, 2021, , 217-235.	0.4	9

#	Article	IF	CITATIONS
19	Effects of Cryopreservation on Acrosin Activity and DNA Damage of Russian Sturgeon (Acipenser) Tj ETQq1 1 C	.784314 rg 0.1	gBT/Overlock
20	Breeding Practice Improves the Mycorrhizal Responsiveness of Cotton (Gossypium spp. L.). Frontiers in Plant Science, 2021, 12, 780454.	1.7	2
21	Soil moisture threshold in controlling above- and belowground community stability in a temperate desert of Central Asia. Science of the Total Environment, 2020, 703, 134650.	3.9	10
22	Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures. Journal of Applied Ecology, 2020, 57, 2203-2211.	1.9	20
23	Different Arbuscular Mycorrhizal Fungi Cocolonizing on a Single Plant Root System Recruit Distinct Microbiomes. MSystems, 2020, 5, .	1.7	47
24	Optimisation of phosphorus fertilisation promotes biomass and phosphorus nutrient accumulation, partitioning and translocation in three cotton (Gossypium hirsutum) genotypes. Crop and Pasture Science, 2020, 71, 56.	0.7	6
25	Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil. Soil Biology and Biochemistry, 2020, 144, 107790.	4.2	55
26	Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway. Plant and Soil, 2020, 449, 357-371.	1.8	52
27	Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems. Soil Use and Management, 2020, 36, 536-546.	2.6	17
28	Elevated precipitation alters the community structure of spring ephemerals by changing dominant species density in Central Asia. Ecology and Evolution, 2020, 10, 2196-2212.	0.8	10
29	Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure. Soil Biology and Biochemistry, 2020, 142, 107724.	4.2	30
30	Mycorrhizal impacts on root trait plasticity of six maize varieties along a phosphorus supply gradient. Plant and Soil, 2020, 448, 71-86.	1.8	25
31	Field performance of different maize varieties in growth cores at natural and reduced mycorrhizal colonization: yield gains and possible fertilizer savings in relation to phosphorus application. Plant and Soil, 2020, 450, 613-624.	1.8	17
32	Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover. Mycorrhiza, 2019, 29, 351-362.	1.3	27
33	Cenotypic differences in phosphorus acquisition efficiency and root performance of cotton (Gossypium hirsutum) under low-phosphorus stress. Crop and Pasture Science, 2019, 70, 344.	0.7	19
34	Maize varieties can strengthen positive plant-soil feedback through beneficial arbuscular mycorrhizal fungal mutualists. Mycorrhiza, 2019, 29, 251-261.	1.3	11
35	Arbuscular mycorrhizal fungi – 15-Fold enlargement of the soil volume of cotton roots for phosphorus uptake in intensive planting conditions. European Journal of Soil Biology, 2019, 90, 31-35.	1.4	14
36	The links between potassium availability and soil exchangeable calcium, magnesium, and aluminum are mediated by lime in acidic soil. Journal of Soils and Sediments, 2019, 19, 1382-1392.	1.5	34

#	Article	IF	CITATIONS
37	The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2. Mycorrhiza, 2019, 29, 69-75.	1.3	14
38	Localized ammonium and phosphorus fertilization can improve cotton lint yield by decreasing rhizosphere soil pH and salinity. Field Crops Research, 2018, 217, 75-81.	2.3	27
39	Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant and Soil, 2018, 427, 191-208.	1.8	145
40	Direct effects of soil cadmium on the growth and activity of arbuscular mycorrhizal fungi. Rhizosphere, 2018, 7, 43-48.	1.4	13
41	Closing the Loop on Phosphorus Loss from Intensive Agricultural Soil: A Microbial Immobilization Solution?. Frontiers in Microbiology, 2018, 9, 104.	1.5	38
42	Arbuscular Mycorrhizal Fungi Negatively Affect Nitrogen Acquisition and Grain Yield of Maize in a N Deficient Soil. Frontiers in Microbiology, 2018, 9, 418.	1.5	55
43	Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions. Environmental Microbiology, 2018, 20, 2639-2651.	1.8	100
44	Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME Journal, 2018, 12, 2339-2351.	4.4	153
45	The role of the seed coat in adaptation of dimorphic seeds of the euhalophyte <i>Suaeda salsa</i> to salinity. Plant Species Biology, 2017, 32, 107-114.	0.6	95
46	Arbuscular mycorrhizal fungal colonization is considerable at optimal Olsen-P levels for maximized yields in an intensive wheat-maize cropping system. Field Crops Research, 2017, 209, 1-9.	2.3	41
47	Phosphate Uptake from Phytate Due to Hyphae-Mediated Phytase Activity by Arbuscular Mycorrhizal Maize. Frontiers in Plant Science, 2017, 8, 684.	1.7	44
48	Increasing phosphorus concentration in the extraradical hyphae of Rhizophagus irregularis DAOM 197198 leads to a concomitant increase in metal minerals. Mycorrhiza, 2016, 26, 909-918.	1.3	9
49	Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphateâ€solubilizing bacterium. New Phytologist, 2016, 210, 1022-1032.	3.5	265
50	The role of salinity in seed maturation of the euhalophyte <i>Suaeda salsa</i> . Plant Biosystems, 2016, 150, 83-90.	0.8	82
51	<i>In situ</i> stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere. Journal of Experimental Botany, 2016, 67, 1689-1701.	2.4	61
52	Response of soil microorganisms after converting a saline desert to arable land in central Asia. Applied Soil Ecology, 2016, 98, 1-7.	2.1	20
53	Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant and Soil, 2016, 398, 195-206.	1.8	69
54	Infectivity and community composition of arbuscular mycorrhizal fungi from different soil depths in intensively managed agricultural ecosystems. Journal of Soils and Sediments, 2015, 15, 1200-1211.	1.5	15

#	Article	IF	CITATIONS
55	Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China. Scientific Reports, 2015, 5, 11409.	1.6	48
56	Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa. Plant Physiology and Biochemistry, 2015, 95, 41-48.	2.8	119
57	Crop yield and soil organic matter after long-term straw return to soil in China. Nutrient Cycling in Agroecosystems, 2015, 102, 371-381.	1.1	140
58	Optimised nitrogen fertiliser management achieved higher diversity of arbuscular mycorrhiza fungi and high-yielding maize (Zea mays L.). Crop and Pasture Science, 2015, 66, 706.	0.7	11
59	Arbuscular mycorrhizal fungi improved plant growth and nutrient acquisition of desert ephemeral Plantago minuta under variable soil water conditions. Journal of Arid Land, 2015, 7, 414-420.	0.9	22
60	Effects of salineâ€waterlogging and dryness/moist alternations on seed germination of halophyte and xerophyte. Plant Species Biology, 2015, 30, 231-236.	0.6	28
61	Phytate utilization of maize mediated by different nitrogen forms in a plant–arbuscular mycorrhizal fungus–phosphate-solubilizing bacterium system. Journal of Plant Interactions, 2014, 9, 514-520.	1.0	6
62	Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus. Journal of Plant Interactions, 2014, 9, 850-856.	1.0	33
63	Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology and Biochemistry, 2014, 74, 177-183.	4.2	154
64	The role of cotyledons in the establishment of <i>Suaeda physophora</i> seedlings. Plant Biosystems, 2014, 148, 584-590.	0.8	16
65	Effects of mucilage on seed germination of the desert ephemeral plant <i><scp>P</scp>lantago minuta</i> <scp>P</scp> all. under osmotic stress and cycles of wet and dry conditions. Plant Species Biology, 2014, 29, 109-116.	0.6	12
66	Ironâ€reducing bacteria can enhance the activation and turnover of the Fe(III)â€fixed phosphorus for mycorrhizal plants. Journal of Plant Nutrition and Soil Science, 2014, 177, 208-215.	1.1	4
67	Is the Inherent Potential of Maize Roots Efficient for Soil Phosphorus Acquisition?. PLoS ONE, 2014, 9, e90287.	1.1	56
68	Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza, 2013, 23, 497-505.	1.3	87
69	Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.). Soil Biology and Biochemistry, 2013, 65, 69-74.	4.2	43
70	Effects of lateral morphology on swimming performance in two sturgeon species. Journal of Applied Ichthyology, 2013, 29, 310-315.	0.3	11
71	Relationships between ion and chlorophyll accumulation in seeds and adaptation to saline environments in <i>Suaeda salsa</i> populations. Plant Biosystems, 2012, 146, 142-149.	0.8	57
72	Arbuscular Mycorrhizal Fungi Can Accelerate the Restoration of Degraded Spring Grassland in Central Asia. Rangeland Ecology and Management, 2012, 65, 426-432.	1.1	36

#	Article	IF	CITATIONS
73	Arbuscular Mycorrhizal Fungi Promote the Growth of Ceratocarpus arenarius (Chenopodiaceae) with No Enhancement of Phosphorus Nutrition. PLoS ONE, 2012, 7, e41151.	1.1	12
74	Synergistic interactions between Glomus mosseae and Bradyrhizobium japonicum in enhancing proton release from nodules and hyphae. Mycorrhiza, 2012, 22, 51-58.	1.3	19
75	Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist, 2011, 190, 794-804.	3.5	409
76	Species, types, distribution, and economic potential of halophytes in China. Plant and Soil, 2011, 342, 495-509.	1.8	66
77	Accumulation of ions during seed development under controlled saline conditions of two Suaeda salsa populations is related to their adaptation to saline environments. Plant and Soil, 2011, 341, 99-107.	1.8	50
78	Trigonella arcuata-associated rhizobia—an Ensifer (Sinorhizobium) meliloti population adapted to a desert environment. Plant and Soil, 2011, 345, 89-102.	1.8	9
79	Positive feedback between acidification and organic phosphate mineralization in the rhizosphere of maize (Zea mays L.). Plant and Soil, 2011, 349, 13-24.	1.8	28
80	On-site growth response of a desert ephemeral plant, Plantago minuta, to indigenous arbuscular mycorrhizal fungi in a central Asia desert. Symbiosis, 2011, 55, 77-84.	1.2	19
81	Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively. Science China Life Sciences, 2011, 54, 282-289.	2.3	26
82	Effects of NO 3 â^' -N on the growth and salinity tolerance of Tamarix laxa Willd. Plant and Soil, 2010, 331, 57-67.	1.8	38
83	Effect of salinity on seed germination, ion content and photosynthesis of cotyledons in halophytes or xerophyte growing in Central Asia. Journal of Plant Ecology, 2010, 3, 259-267.	1.2	67
84	Enrichment of soil fertility and salinity by tamarisk in saline soils on the northern edge of the Taklamakan Desert. Agricultural Water Management, 2010, 97, 1978-1986.	2.4	36
85	Effect of Nitrate on Root Development and Nitrogen Uptake of Suaeda physophora Under NaCl Salinity. Pedosphere, 2010, 20, 536-544.	2.1	34
86	Effects of sodium on nitrate uptake and osmotic adjustment of <i>Suaeda physophora</i> . Journal of Arid Land, 2010, 2, 190-196.	0.9	18
87	Effect of NaCl on Salt Resistance of <i>Suaeda physophora, Haloxylon ammodendron</i> and <i>Haloxylon persicum</i> during Their Seed Germination and Young Seedling Stages. Arid Zone Research, 2010, 26, 543-547.	0.1	0
88	Effect of salinity on growth, ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa. Plant and Soil, 2009, 314, 133-141.	1.8	100
89	Effect of nitrogen and sulfur interaction on growth and pungency of different pseudostem types of Chinese spring onion (Allium fistulosum L.). Scientia Horticulturae, 2009, 121, 12-18.	1.7	27
90	Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecological Research, 2009, 24, 1345-1350.	0.7	66

#	Article	IF	CITATIONS
91	Chlorophyll in desiccated seeds of a euhalophyte, Suaeda physophora, and its significancy in plant adaptation to salinity during germination. Science in China Series C: Life Sciences, 2008, 51, 410-417.	1.3	7
92	Effects of salinity and scarifying seed coat on ion content of embryos and seed germination for Suaeda physophora and Haloxylon ammodendron. Seed Science and Technology, 2007, 35, 615-623.	0.6	12
93	Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals in plant communities of Junggar Basin, northwest China. Applied Soil Ecology, 2007, 35, 10-20.	2.1	46
94	Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Applied Soil Ecology, 2007, 35, 599-609.	2.1	81
95	Characteristics and dynamics of the soil seed bank at the north edge of Taklimakan Desert. Science in China Series D: Earth Sciences, 2007, 50, 122-127.	0.9	8
96	Diversity and zonal distribution of arbuscular mycorrhizal fungi on the northern slopes of the Tianshan Mountains. Science in China Series D: Earth Sciences, 2007, 50, 135-141.	0.9	4
97	Osmotic adjustment traits of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions. Plant Science, 2006, 170, 113-119.	1.7	73
98	Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions. New Phytologist, 2006, 171, 357-366.	3.5	79
99	Salinity and Temperature Effects on Germination for Three Salt-resistant Euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum. Plant and Soil, 2006, 279, 201-207.	1.8	49
100	Arbuscular mycorrhizal fungi associated with the Meliaceae on Hainan island, China. Mycorrhiza, 2006, 16, 81-87.	1.3	29
101	Twenty years of research on community composition and species distribution of arbuscular mycorrhizal fungi in China: a review. Mycorrhiza, 2006, 16, 229-239.	1.3	78
102	Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau. Mycorrhiza, 2006, 16, 151-157.	1.3	32
103	A preliminary survey of the arbuscular mycorrhizal status of grassland plants in southern Tibet. Mycorrhiza, 2006, 16, 191-196.	1.3	39
104	Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza, 2006, 16, 269-275.	1.3	41
105	Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals growing under and beyond the canopies of Tamarisk shrubs. Science Bulletin, 2006, 51, 132-139.	1.7	11
106	Arbuscular mycorrhizal associations in the Gurbantunggut Desert. Science Bulletin, 2006, 51, 140-146.	1.7	6
107	Screening of Arbuscular Mycorrhizal Fungi for Symbiotic Efficiency with Sweet Potato. Journal of Plant Nutrition, 2006, 29, 1085-1094.	0.9	20
108	Strategies for Adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a Saline Environment During Seed-Germination Stage. Annals of Botany, 2005, 96, 399-405.	1.4	182

#	Article	IF	CITATIONS
109	Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil, 2004, 261, 219-229.	1.8	88
110	Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Applied Soil Ecology, 2004, 26, 143-148.	2.1	161
111	Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Applied Soil Ecology, 2003, 22, 139-148.	2.1	127
112	HISTOCHEMICAL VISUALIZATION OF PHOSPHATASE RELEASED BY ARBUSCULAR MYCORRHIZAL FUNGI IN SOIL. Journal of Plant Nutrition, 2002, 25, 1-1.	0.9	30
113	UPTAKE OF NITROGEN FROM INDIGENOUS SOIL POOL BY COTTON PLANT INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI. Communications in Soil Science and Plant Analysis, 2002, 33, 3825-3836.	0.6	22
114	Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 2002, 12, 185-190.	1.3	345
115	Title is missing!. Plant and Soil, 2001, 230, 279-285.	1.8	68
116	Influence of extramatrical hyphae on mycorrhizal dependency of wheat genotypes. Communications in Soil Science and Plant Analysis, 2001, 32, 3307-3317.	0.6	23
117	Rapid assessment of acid phosphatase activity in the mycorrhizosphere and in arbuscular mycorrhizal fungal hyphae. Science Bulletin, 2000, 45, 1187-1191.	1.7	11
118	Can mycorrhizal fungi alleviate plant community instability caused by increased precipitation in arid ecosystems?. Plant and Soil, 0, , .	1.8	4