## Antonella Piscioneri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2898878/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                 | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. Biomaterials, 2009, 30, 2531-2543.                                                            | 5.7 | 115       |
| 2  | Influence of membrane surface properties on the growth of neuronal cells isolated from hippocampus. Journal of Membrane Science, 2008, 325, 139-149.                    | 4.1 | 81        |
| 3  | Influence of micro-patterned PLLA membranes on outgrowth and orientation of hippocampal neurites.<br>Biomaterials, 2010, 31, 7000-7011.                                 | 5.7 | 70        |
| 4  | Neuroprotective effect of human mesenchymal stem cells in a compartmentalized neuronal membrane<br>system. Acta Biomaterialia, 2015, 24, 297-308.                       | 4.1 | 54        |
| 5  | Improved functions of human hepatocytes on NH3 plasma-grafted PEEK-WC–PU membranes.<br>Biomaterials, 2009, 30, 4348-4356.                                               | 5.7 | 51        |
| 6  | Neuroprotective Effect of Didymin on Hydrogen Peroxide-Induced Injury in the Neuronal Membrane<br>System. Cells Tissues Organs, 2014, 199, 184-200.                     | 1.3 | 46        |
| 7  | Biodegradable and synthetic membranes for the expansion and functional differentiation of rat embryonic liver cells. Acta Biomaterialia, 2011, 7, 171-179.              | 4.1 | 41        |
| 8  | Novel membranes and surface modification able to activate specific cellular responses. New<br>Biotechnology, 2007, 24, 23-26.                                           | 2.7 | 40        |
| 9  | Human lymphocyte PEEK-WC hollow fiber membrane bioreactor. Journal of Biotechnology, 2007, 132, 65-74.                                                                  | 1.9 | 35        |
| 10 | Rat embryonic liver cell expansion and differentiation on NH3 plasma-grafted PEEK-WC-PU membranes.<br>Biomaterials, 2009, 30, 6514-6521.                                | 5.7 | 31        |
| 11 | Human liver microtissue spheroids in hollow fiber membrane bioreactor. Colloids and Surfaces B:<br>Biointerfaces, 2017, 160, 272-280.                                   | 2.5 | 31        |
| 12 | Membrane Bioreactor for Expansion and Differentiation of Embryonic Liver Cells. Industrial &<br>Engineering Chemistry Research, 2013, 52, 10387-10395.                  | 1.8 | 26        |
| 13 | Neuronal growth and differentiation on biodegradable membranes. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 106-117.                              | 1.3 | 25        |
| 14 | Microtube array membrane bioreactor promotes neuronal differentiation and orientation.<br>Biofabrication, 2017, 9, 025018.                                              | 3.7 | 24        |
| 15 | Flat and tubular membrane systems for the reconstruction of hippocampal neuronal network.<br>Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 299-313. | 1.3 | 23        |
| 16 | Neuronal membrane bioreactor as a tool for testing crocin neuroprotective effect in Alzheimer's<br>disease. Chemical Engineering Journal, 2016, 305, 69-78.             | 6.6 | 22        |
| 17 | Human lymphocytes cultured in 3-D bioreactors: Influence of configuration on metabolite transport and reactions. Biomaterials, 2012, 33, 8296-8303.                     | 5.7 | 19        |
| 18 | Kinetics of oxygen uptake by cells potentially used in a tissue engineered trachea. Biomaterials, 2014, 35, 6829-6837.                                                  | 5.7 | 19        |

ANTONELLA PISCIONERI

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Membrane bioreactor for investigation of neurodegeneration. Materials Science and Engineering C, 2019, 103, 109793.                                                                                                             | 3.8 | 17        |
| 20 | Antiâ€neuroinflammatory effect of daidzein in human hypothalamic <scp>GnRH</scp> neurons in an in<br>vitro membraneâ€based model. BioFactors, 2021, 47, 93-111.                                                                 | 2.6 | 15        |
| 21 | Membrane bioreactors for regenerative medicine: an example of the bioartificial liver. Asia-Pacific<br>Journal of Chemical Engineering, 2010, 5, 146-159.                                                                       | 0.8 | 12        |
| 22 | PAN hollow fiber membranes elicit functional hippocampal neuronal network. Journal of Materials<br>Science: Materials in Medicine, 2012, 23, 149-156.                                                                           | 1.7 | 12        |
| 23 | Erythropoietin enhances cell proliferation and survival of human fetal neuronal progenitors in normoxia. Brain Research, 2012, 1452, 18-28.                                                                                     | 1.1 | 9         |
| 24 | Hollow Fiber and Nanofiber Membranes in Bioartificial Liver and Neuronal Tissue Engineering. Cells<br>Tissues Organs, 2021, , 1-30.                                                                                             | 1.3 | 9         |
| 25 | Overstimulation of Glutamate Signals Leads to Hippocampal Transcriptional Plasticity in Hamsters.<br>Cellular and Molecular Neurobiology, 2014, 34, 501-509.                                                                    | 1.7 | 8         |
| 26 | Membrane bioreactor to guide hepatic differentiation of human mesenchymal stem cells. Journal of<br>Membrane Science, 2018, 564, 832-841.                                                                                       | 4.1 | 8         |
| 27 | Recent Strategies Combining Biomaterials and Stem Cells for Bone, Liver and Skin Regeneration.<br>Current Stem Cell Research and Therapy, 2016, 11, 676-691.                                                                    | 0.6 | 8         |
| 28 | Polycaprolactone-Hydroxyapatite Composite Membrane Scaffolds for Bone Tissue Engineering.<br>Materials Research Society Symposia Proceedings, 2013, 1502, 1.                                                                    | 0.1 | 6         |
| 29 | H <sub>2</sub> /NH <sub>3</sub> Plasmaâ€Grafting of PEEKâ€WCâ€PU Membrane to Improve their<br>cytoâ€Compatibility with Hepatocytes. Plasma Processes and Polymers, 2009, 6, S81.                                                | 1.6 | 5         |
| 30 | Neuronal Differentiation Modulated by Polymeric Membrane Properties. Cells Tissues Organs, 2017, 204, 164-178.                                                                                                                  | 1.3 | 5         |
| 31 | PLGA Multiplex Membrane Platform for Disease Modelling and Testing of Therapeutic Compounds.<br>Membranes, 2021, 11, 112.                                                                                                       | 1.4 | 5         |
| 32 | Multifunctional membranes for lipidic nanovesicle capture. Separation and Purification Technology, 2022, 298, 121561.                                                                                                           | 3.9 | 4         |
| 33 | Distinct $\hat{I}$ ± GABAAR subunits influence structural and transcriptional properties of CA1 hippocampal neurons. Neuroscience Letters, 2011, 496, 106-110.                                                                  | 1.0 | 3         |
| 34 | Application of the Co-culture Membrane System Pointed to a Protective Role of Catestatin on<br>Hippocampal Plus Hypothalamic Neurons Exposed to Oxygen and Glucose Deprivation. Molecular<br>Neurobiology, 2017, 54, 7369-7381. | 1.9 | 3         |
| 35 | Human lymphocyte hollow fiber bioreactor. Desalination, 2006, 199, 141-143.                                                                                                                                                     | 4.0 | 2         |
|    |                                                                                                                                                                                                                                 |     |           |

Membrane Approaches for Liver and Neuronal Tissue Engineering. , 2010, , 229-252.

2

## ANTONELLA PISCIONERI

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of native and NH3 plasma-functionalized polymeric membranes on the gene expression profiles of primary hepatocytes. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 486-496. | 1.3 | 2         |
| 38 | Biohybrid Membrane Systems for Testing Molecules and Stem Cell Therapy in Neuronal Tissue<br>Engineering. Current Pharmaceutical Design, 2017, 23, 3858-3870.                                         | 0.9 | 2         |
| 39 | Novel bioactive polymeric membranes to elicit specific human hepatocyte responses. Desalination, 2006, 199, 261-262.                                                                                  | 4.0 | 1         |
| 40 | Biodegradable Membranes for Neuronal Growth and Differentiation. Procedia Engineering, 2012, 44, 363-366.                                                                                             | 1.2 | 0         |
| 41 | New Advanced Biomaterials for Tissue and Organ Regeneration/Repair. Cells Tissues Organs, 2017, 204, 123-124.                                                                                         | 1.3 | 0         |
| 42 | 4.12 Membrane Approaches for Liver and Neuronal Tissue Engineering. , 2017, , 248-271.                                                                                                                |     | 0         |
| 43 | Stem Cell. , 2015, , 1-4.                                                                                                                                                                             |     | 0         |
| 44 | Stem Cell. , 2016, , 1822-1826.                                                                                                                                                                       |     | 0         |