
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2898814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results in Physics, 2017, 7, 2317-2324.	2.0	380
2	MHD flow of a Casson fluid over an exponentially shrinking sheet. Scientia Iranica, 2012, 19, 1550-1553.	0.3	277
3	MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. AEJ - Alexandria Engineering Journal, 2013, 52, 577-582.	3.4	267
4	Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 121-126.	2.7	233
5	Flow of a Williamson fluid over a stretching sheet. Brazilian Journal of Chemical Engineering, 2013, 30, 619-625.	0.7	223
6	Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian Journal of Physics, 2013, 87, 1121-1124.	0.9	188
7	Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 17-23.	1.3	180
8	Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B: Condensed Matter, 2015, 457, 40-47.	1.3	171
9	A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube. Advanced Powder Technology, 2016, 27, 2175-2185.	2.0	169
10	Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. Journal of Molecular Liquids, 2016, 218, 484-493.	2.3	159
11	Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. European Physical Journal E, 2018, 41, 75.	0.7	158
12	Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chinese Journal of Physics, 2021, 69, 109-117.	2.0	155
13	Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chinese Journal of Aeronautics, 2013, 26, 1389-1397.	2.8	149
14	Inspection of hybrid based nanofluid flow over a curved surface. Computer Methods and Programs in Biomedicine, 2020, 189, 105193.	2.6	148
15	Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Research Letters, 2012, 7, 94.	3.1	147
16	3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technology, 2017, 315, 205-215.	2.1	147
17	Flow and heat transfer analysis of Williamson nanofluid. Applied Nanoscience (Switzerland), 2014, 4, 1005-1012.	1.6	145
18	MHD Three-Dimensional Boundary Layer Flow of Casson Nanofluid Past a Linearly Stretching Sheet With Convective Boundary Condition. IEEE Nanotechnology Magazine, 2014, 13, 109-115.	1.1	144

#	Article	IF	CITATIONS
19	Endoscopic Effects on Peristaltic Flow of a Nanofluid. Communications in Theoretical Physics, 2011, 56, 761-768.	1.1	140
20	Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. AEJ - Alexandria Engineering Journal, 2014, 53, 219-224.	3.4	140
21	Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface. Numerical Algorithms, 2011, 57, 187-205.	1.1	129
22	Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: Application of Adomian decomposition method. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 3844-3855.	1.7	126
23	HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 475-481.	1.7	126
24	Peristaltic flow of a Williamson fluid in an asymmetric channel. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1705-1716.	1.7	126
25	xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	וl:matb>Al	≺m r⊉ ≄math
26	Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions. International Journal of Thermal Sciences, 2014, 78, 90-100.	2.6	121
27	Numerical analysis of micropolar hybrid nanofluid. Applied Nanoscience (Switzerland), 2019, 9, 447-459.	1.6	116
28	Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model. Applied Mathematics and Computation, 2004, 151, 153-161.	1.4	114
29	The combined effects of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet. Journal of Molecular Liquids, 2014, 196, 21-25.	2.3	113
30	The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder. Applied Nanoscience (Switzerland), 2014, 4, 869-873.	1.6	111
31	Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer. International Journal of Heat and Mass Transfer, 2013, 57, 679-689.	2.5	105
32	Numerical solution of non-Newtonian nanofluid flow over a stretching sheet. Applied Nanoscience (Switzerland), 2014, 4, 625-631.	1.6	102
33	Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: Closed form solutions. Journal of Magnetism and Magnetic Materials, 2013, 328, 11-20.	1.0	101
34	Characteristics of three dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder. Results in Physics, 2018, 8, 829-835.	2.0	101
35	An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsystem Technologies, 2019, 25, 683-689.	1.2	100
36	Cattaneo–Christov heat flux model for stagnation point flow of micropolar nanofluid toward a nonlinear stretching surface with slip effects. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1187-1199.	2.0	100

#	Article	IF	CITATIONS
37	On the influence of heat transfer in peristalsis with variable viscosity. International Journal of Heat and Mass Transfer, 2009, 52, 4722-4730.	2.5	97
38	MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet: Dual solutions. Ain Shams Engineering Journal, 2014, 5, 1233-1239.	3.5	96
39	Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2973-2980.	0.9	96
40	Influence of heat transfer on a peristaltic transport of Herschel–Bulkley fluid in a non-uniform inclined tube. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 4100-4113.	1.7	95
41	Entropy generation and temperature-dependent viscosity in the study of SWCNT–MWCNT hybrid nanofluid. Applied Nanoscience (Switzerland), 2020, 10, 5107-5119.	1.6	95
42	Performance of hybrid nanofluid (Cu-CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. AEJ - Alexandria Engineering Journal, 2018, 57, 1943-1954.	3.4	94
43	Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica, 2015, 50, 2007-2022.	1.2	88
44	A numerical study of magnetohydrodynamic transport of nanofluids over a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects. Chemical Physics Letters, 2016, 661, 20-30.	1.2	88
45	On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results in Physics, 2018, 9, 1224-1232.	2.0	88
46	Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 49-58.	2.7	87
47	Peristaltic flow of a nanofluid with slip effects. Meccanica, 2012, 47, 1283-1294.	1.2	86
48	Oblique Stagnation Point Flow of Nanofluids over Stretching/Shrinking Sheet with Cattaneo–Christov Heat Flux Model: Existence of Dual Solution. Symmetry, 2019, 11, 1070.	1.1	86
49	Carreau fluid model for blood flow through a tapered artery with a stenosis. Ain Shams Engineering Journal, 2014, 5, 1307-1316.	3.5	85
50	Cattaneo-Christov flux in the flow of a viscoelastic fluid in the presence of Newtonian heating. Journal of Molecular Liquids, 2017, 237, 180-184.	2.3	85
51	Numerical Study of Boundary Layer Flow and Heat Transfer of Oldroyd-B Nanofluid towards a Stretching Sheet. PLoS ONE, 2013, 8, e69811.	1.1	84
52	The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder. AEJ - Alexandria Engineering Journal, 2014, 53, 747-750.	3.4	84
53	MHD stagnation point flow of viscous nanofluid over a curved surface. Physica Scripta, 2019, 94, 115207.	1.2	84
54	Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Physica A: Statistical Mechanics and Its Applications, 2020, 553, 123979.	1.2	84

#	Article	IF	CITATIONS
55	Peristaltic flow of a nanofluid in a non-uniform tube. Heat and Mass Transfer, 2012, 48, 451-459.	1.2	83
56	Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4607-4623.	1.6	83
57	Effect of Thermal Radiation for Megnetohydrodynamic Boundary Layer Flow of a Nanofluid Past a Stretching Sheet with Convective Boundary Conditions. Journal of Computational and Theoretical Nanoscience, 2014, 11, 32-40.	0.4	82
58	MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 73, 45-53.	1.3	81
59	Impact of stratification and Cattaneo-Christov heat flux in the flow saturated with porous medium. Journal of Molecular Liquids, 2016, 224, 423-430.	2.3	81
60	MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions. Physica Scripta, 2019, 94, 075204.	1.2	81
61	Influence of inclined magnetic field on peristaltic flow of a Williamson fluid model in an inclined symmetric or asymmetric channel. Mathematical and Computer Modelling, 2010, 52, 107-119.	2.0	79
62	Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Applied Nanoscience (Switzerland), 2014, 4, 919-926.	1.6	77
63	Numerical simulation of peristaltic flow of a Carreau nanofluid in an asymmetric channel. AEJ - Alexandria Engineering Journal, 2014, 53, 191-197.	3.4	76
64	Influence of radially varying MHD on the peristaltic flow in an annulus with heat and mass transfer. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 286-294.	2.7	75
65	Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer. Computer Methods and Programs in Biomedicine, 2016, 130, 22-30.	2.6	75
66	Ferrite nanoparticles Ni- ZnFe2O4 , Mn- ZnFe2O4 and Fe2O4 in the flow of ferromagnetic nanofluid. European Physical Journal Plus, 2017, 132, 1.	1.2	75
67	Theoretical analysis of upper-convected Maxwell fluid flow with Cattaneo–Christov heat flux model. Chinese Journal of Physics, 2017, 55, 1615-1625.	2.0	74
68	Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid. RSC Advances, 2019, 9, 4751-4764.	1.7	73
69	A novel approach for investigation of heat transfer enhancement with ferromagnetic hybrid nanofluid by considering solar radiation. Microsystem Technologies, 2021, 27, 97-104.	1.2	73
70	Influence of heat and mass transfer on peristaltic flow of a third order fluid in a diverging tube. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 2916-2931.	1.7	72
71	Theoretical analysis of metallic nanoparticles on blood flow through stenosed artery with permeable walls. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 542-554.	0.9	72
72	Peristaltic Flow of Carreau Fluid in a Rectangular Duct through a Porous Medium. Mathematical Problems in Engineering, 2012, 2012, 1-24.	0.6	71

#	Article	IF	CITATIONS
73	The Blood Flow of Prandtl Fluid Through a Tapered Stenosed Arteries in Permeable Walls with Magnetic Field. Communications in Theoretical Physics, 2015, 63, 353-358.	1.1	71
74	Effect of variable thermal conductivity and thermal radiation with CNTS suspended nanofluid over a stretching sheet with convective slip boundary conditions: Numerical study. Journal of Molecular Liquids, 2016, 222, 279-286.	2.3	71
75	Radiative SWCNT and MWCNT nanofluid flow of Falkner–Skan problem with double stratification. Physica A: Statistical Mechanics and Its Applications, 2020, 547, 124054.	1.2	71
76	Peristaltic Flow of a Jeffrey Fluid with Variable Viscosity in an Asymmetric Channel. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 713-722.	0.7	70
77	Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer. International Journal of Heat and Mass Transfer, 2012, 55, 1855-1862.	2.5	70
78	Squeezed flow of a nanofluid with Cattaneo–Christov heat and mass fluxes. Results in Physics, 2017, 7, 862-869.	2.0	70
79	Peristaltic flow of a Jeffrey fluid in a rectangular duct. Nonlinear Analysis: Real World Applications, 2010, 11, 4238-4247.	0.9	69
80	Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring–Powell fluid in an endoscope. International Journal of Heat and Mass Transfer, 2012, 55, 375-383.	2.5	69
81	Heat transfer in a peristaltic flow of MHD fluid with partial slip. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 312-321.	1.7	68
82	MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field. Acta Astronautica, 2016, 128, 1-12.	1.7	68
83	Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions. Physica A: Statistical Mechanics and Its Applications, 2020, 551, 124083.	1.2	68
84	Hydromagnetic couette flow of an Oldroyd-B fluid in a rotating system. International Journal of Engineering Science, 2004, 42, 65-78.	2.7	67
85	Unsteady MHD flow of a non-Newtonian fluid on a porous plate. Journal of Mathematical Analysis and Applications, 2007, 325, 724-733.	0.5	67
86	A Mathematical Study of Non-Newtonian Micropolar Fluid in Arterial Blood Flow Through Composite Stenosis. Applied Mathematics and Information Sciences, 2014, 8, 1567-1573.	0.7	67
87	Heat transfer analysis of Williamson fluid over exponentially stretching surface. Applied Mathematics and Mechanics (English Edition), 2014, 35, 489-502.	1.9	67
88	On both MHD and slip effect in micropolar hybrid nanofluid past a circular cylinder under stagnation point region. Canadian Journal of Physics, 2019, 97, 392-399.	0.4	67
89	Heat transport phenomenon in the ferromagnetic fluid over a stretching sheet with thermal stratification. Results in Physics, 2017, 7, 854-861.	2.0	66
90	Computational study of Falkner-Skan problem for a static and moving wedge. Sensors and Actuators B: Chemical, 2018, 263, 69-76.	4.0	66

#	Article	IF	CITATIONS
91	Peristaltic Transport of a Hyperbolic Tangent Fluid Model in an Asymmetric Channel. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 559-567.	0.7	65
92	MHD stagnation flow of a micropolar fluid through a porous medium. Meccanica, 2010, 45, 869-880.	1.2	65
93	Power law fluid model for blood flow through a tapered artery with a stenosis. Applied Mathematics and Computation, 2011, 217, 7108-7116.	1.4	65
94	Nano fluid flow in tapering stenosed arteries with permeable walls. International Journal of Thermal Sciences, 2014, 85, 54-61.	2.6	65
95	Model-based analysis of micropolar nanofluid flow over a stretching surface. European Physical Journal Plus, 2014, 129, 1.	1.2	65
96	Water driven flow of carbon nanotubes in a rotating channel. Journal of Molecular Liquids, 2016, 214, 136-144.	2.3	65
97	Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface. Journal of Magnetism and Magnetic Materials, 2016, 410, 72-80.	1.0	65
98	Effects of transverse magnetic field on a rotating micropolar fluid between parallel plates with heat transfer. Journal of Magnetism and Magnetic Materials, 2016, 401, 1006-1014.	1.0	64
99	Physical aspects of peristaltic flow of hybrid nano fluid inside a curved tube having ciliated wall. Results in Physics, 2020, 19, 103431.	2.0	64
100	Buoyancy and Radiation Effect on Stagnation Point Flow of Micropolar Nanofluid Along a Vertically Convective Stretching Surface. IEEE Nanotechnology Magazine, 2015, 14, 42-50.	1.1	63
101	Mixed convective oblique flow of a Casson fluid with partial slip, internal heating and homogeneous–heterogeneous reactions. Journal of Molecular Liquids, 2016, 222, 1010-1019.	2.3	63
102	Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga curface surface. Computer Methods and Programs in Biomedicine, 2020, 185, 105136.	2.6	63
103	MHD 3D free convective flow of nanofluid over an exponentially stretching sheet with chemical reaction. Advanced Powder Technology, 2017, 28, 2159-2166.	2.0	62
104	Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface. Results in Physics, 2018, 8, 316-323.	2.0	62
105	Thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 4965-4972.	0.9	61
106	Influence of heat transfer on a peristaltic flow of Johnson Segalman fluid in a non uniform tube. International Communications in Heat and Mass Transfer, 2009, 36, 1050-1059.	2.9	61
107	JEFFREY FLUID MODEL FOR BLOOD FLOW THROUGH A TAPERED ARTERY WITH A STENOSIS. Journal of Mechanics in Medicine and Biology, 2011, 11, 529-545.	0.3	61
108	The Mathematical Analysis for Peristaltic Flow of Hyperbolic Tangent Fluid in a Curved Channel. Communications in Theoretical Physics, 2013, 59, 729-736.	1.1	61

#	Article	IF	CITATIONS
109	Series Solutions of Magnetohydrodynamic Peristaltic Flow of a Jeffrey Fluid in Eccentric Cylinders. Applied Mathematics and Information Sciences, 2013, 7, 1441-1449.	0.7	60
110	Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis. Results in Physics, 2017, 7, 4130-4139.	2.0	60
111	Mixed convection flow of Eyring–Powell fluid along a rotating cone. Results in Physics, 2014, 4, 54-62.	2.0	59
112	On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle. European Physical Journal Plus, 2020, 135, 1.	1.2	59
113	Numerical computations for Buongiorno nano fluid model on the boundary layer flow of viscoelastic fluid towards a nonlinear stretching sheet. AEJ - Alexandria Engineering Journal, 2022, 61, 1769-1778.	3.4	59
114	Numerical study of Williamson nano fluid flow in an asymmetric channel. Results in Physics, 2013, 3, 161-166.	2.0	58
115	Dual solutions in MHD stagnation-point flow of Prandtl fluid impinging on shrinking sheet. Applied Mathematics and Mechanics (English Edition), 2014, 35, 813-820.	1.9	58
116	Numerical investigation on MHD oblique flow of Walter's B type nano fluid over a convective surface. International Journal of Thermal Sciences, 2015, 92, 162-172.	2.6	58
117	Effects of heat and mass transfer on peristaltic flow of a Bingham fluid in the presence of inclined magnetic field and channel with different wave forms. Journal of Magnetism and Magnetic Materials, 2014, 362, 184-192.	1.0	57
118	Chemically reactive species in the flow of a Maxwell fluid. Results in Physics, 2017, 7, 2607-2613.	2.0	57
119	Influence of heat and mass transfer on the peristaltic flow of a Johnson Segalman fluid in a vertical asymmetric channel with induced MHD. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 58-66.	2.7	56
120	Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 596-604.	2.7	56
121	Entropy analysis of radioactive rotating nanofluid with thermal slip. Applied Thermal Engineering, 2017, 112, 832-840.	3.0	56
122	Mixed convection flow of hybrid nanoparticle along a Riga surface with Thomson and Troian slip condition. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2099-2109.	2.0	56
123	Flow of 3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat flux model and chemical processes over an exponentially stretching surface. Results in Physics, 2018, 8, 397-403.	2.0	55
124	Mathematical analysis of bio-convective micropolar nanofluid. Journal of Computational Design and Engineering, 2019, 6, 233-242.	1.5	55
125	Study of three dimensional stagnation point flow of hybrid nanofluid over an isotropic slip surface. Physica A: Statistical Mechanics and Its Applications, 2020, 554, 124020.	1.2	55
126	Mathematical Analysis for Peristaltic Flow of Two Phase Nanofluid in a Curved Channel. Communications in Theoretical Physics, 2015, 64, 547-554.	1.1	54

#	Article	IF	CITATIONS
127	Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles. International Journal of Heat and Mass Transfer, 2015, 85, 1041-1048.	2.5	54
128	Flow analysis of biconvective heat and mass transfer of two-dimensional couple stress fluid over a paraboloid of revolution. International Journal of Modern Physics B, 2020, 34, 2050110.	1.0	54
129	Heat transfer analysis for three-dimensional stagnation-point flow over an exponentially stretching surface. Chinese Journal of Physics, 2017, 55, 1552-1560.	2.0	53
130	Heat transfer of three-dimensional micropolar fluid on a Riga plate. Canadian Journal of Physics, 2020, 98, 32-38.	0.4	53
131	Unsteady motions of a generalized second-grade fluid. Mathematical and Computer Modelling, 2005, 41, 629-637.	2.0	52
132	Slip effects on the peristaltic flow of a Jeffrey fluid in an asymmetric channel under the effect of induced magnetic field. International Journal for Numerical Methods in Fluids, 2010, 63, 374-394.	0.9	52
133	Magnetohydrodynamic peristaltic flow of a hyperbolic tangent fluid in a vertical asymmetric channel with heat transfer. Acta Mechanica Sinica/Lixue Xuebao, 2011, 27, 237-250.	1.5	52
134	Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface. Journal of Magnetism and Magnetic Materials, 2015, 378, 457-462.	1.0	52
135	Boundary Layer Flow over a Curved Surface Imbedded in Porous Medium. Communications in Theoretical Physics, 2019, 71, 344.	1.1	52
136	Convective Heat and Mass Transfer in Magneto Walter's B Nanofluid Flow Induced by a Rotating Cone. Arabian Journal for Science and Engineering, 2019, 44, 1515-1523.	1.7	52
137	Numerical analysis of water based CNTs flow of micropolar fluid through rotating frame. Computer Methods and Programs in Biomedicine, 2020, 186, 105194.	2.6	52
138	Numerical solutions of Williamson fluid with pressure dependent viscosity. Results in Physics, 2015, 5, 20-25.	2.0	51
139	Effect of SWCNT and MWCNT on the flow of micropolar hybrid nanofluid over a curved stretching surface with induced magnetic field. Scientific Reports, 2020, 10, 8488.	1.6	51
140	Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip. International Communications in Heat and Mass Transfer, 2022, 135, 106107.	2.9	51
141	Falkner–Skan wedge flow of a power-law fluid with mixed convection and porous medium. Computers and Fluids, 2011, 49, 22-28.	1.3	49
142	Investigation of Cu-CuO/blood mediated transportation in stenosed artery with unique features for theoretical outcomes of hemodynamics. Journal of Molecular Liquids, 2018, 254, 421-432.	2.3	49
143	Finite volume method for mixed convection flow of Ag–ethylene glycol nanofluid flow in a cavity having thin central heater. Physica A: Statistical Mechanics and Its Applications, 2020, 537, 122738.	1.2	49
144	Magnetohydrodynamic oblique stagnation point flow of second grade fluid over an oscillatory stretching surface. Results in Physics, 2020, 18, 103233.	2.0	49

#	Article	IF	CITATIONS
145	Cattaneo–Christov-based study of SWCNT–MWCNT/EG Casson hybrid nanofluid flow past a lubricated surface with entropy generation. Applied Nanoscience (Switzerland), 2020, 10, 5449-5458.	1.6	49
146	Thermal analysis of Casson micropolar nanofluid flow over a permeable curved stretching surface under the stagnation region. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2485-2497.	2.0	49
147	Simulation of heat and chemical reactions on Reiner Rivlin fluid model for blood flow through a tapered artery with a stenosis. Heat and Mass Transfer, 2010, 46, 531-539.	1.2	48
148	Peristaltic flow of a Phanâ€Thienâ€Tanner nanofluid in a diverging tube. Heat Transfer - Asian Research, 2012, 41, 10-22.	2.8	48
149	Peristaltic transport of a Carreau fluid in a compliant rectangular duct. AEJ - Alexandria Engineering Journal, 2014, 53, 475-484.	3.4	48
150	Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. Computer Methods and Programs in Biomedicine, 2017, 139, 137-147.	2.6	48
151	The influence of slip condition on thin film flow of a fourth grade fluid by the homotopy analysis method. Computers and Mathematics With Applications, 2008, 56, 2019-2026.	1.4	47
152	Peristaltic flow of Sisko fluid in a uniform inclined tube. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 675-683.	1.5	47
153	Characteristics of Jeffrey fluid model for peristaltic flow of chyme in small intestine with magnetic field. Results in Physics, 2013, 3, 152-160.	2.0	47
154	Theoretical analysis of slip flow on a rotating cone with viscous dissipation effects. Journal of Hydrodynamics, 2015, 27, 616-623.	1.3	47
155	The study of (Cu, TiO2, Al2O3) nanoparticles as antimicrobials of blood flow through diseased arteries. Journal of Molecular Liquids, 2016, 216, 615-623.	2.3	47
156	On extended version of Yamada–Ota and Xue models in micropolar fluid flow under the region of stagnation point. Physica A: Statistical Mechanics and Its Applications, 2020, 542, 123512.	1.2	47
157	Impact of induced magnetic field on second-grade nanofluid flow past a convectively heated stretching sheet. Applied Nanoscience (Switzerland), 2020, 10, 3001-3009.	1.6	47
158	Analysis of activation energy and its impact on hybrid nanofluid in the presence of Hall and ion slip currents. Applied Nanoscience (Switzerland), 2020, 10, 5315-5330.	1.6	46
159	A comparative study between linear and exponential stretching sheet with double stratification of a rotating Maxwell nanofluid flow. Surfaces and Interfaces, 2021, 22, 100886.	1.5	46
160	Analytical solutions for pipe flow of a fourth grade fluid with Reynold and Vogel's models of viscosities. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2073-2090.	1.7	45
161	Influence of heat and chemical reactions on Walter's B fluid model for blood flow through a tapered artery. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 67-75.	2.7	45
162	Double-diffusive natural convective boundary-layer flow of a nanofluid over a stretching sheet with magnetic field. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 108-121.	1.6	45

#	Article	IF	CITATIONS
163	Convective Heat and Mass Transfer in Magneto Jeffrey Fluid Flow on a Rotating Cone with Heat Source and Chemical Reaction. Communications in Theoretical Physics, 2018, 70, 534.	1.1	45
164	Transportation of slip effects on nanomaterial micropolar fluid flow over exponentially stretching. AEJ - Alexandria Engineering Journal, 2020, 59, 3443-3450.	3.4	45
165	Effects of heat and mass transfer on peristaltic flow of a nanofluid between eccentric cylinders. Applied Nanoscience (Switzerland), 2014, 4, 393-404.	1.6	44
166	Optimal and Numerical Solutions for an MHD Micropolar Nanofluid between Rotating Horizontal Parallel Plates. PLoS ONE, 2015, 10, e0124016.	1.1	44
167	Model based study of SWCNT and MWCNT thermal conductivities effect on the heat transfer due to the oscillating wall conditions. International Journal of Hydrogen Energy, 2017, 42, 28945-28957.	3.8	44
168	Heat transfer of Maxwell base fluid flow of nanomaterial with MHD over a vertical moving surface. AEJ - Alexandria Engineering Journal, 2020, 59, 1847-1856.	3.4	44
169	Dual solutions in MHD stagnation point flow of nanofluid induced by porous stretching/shrinking sheet with anisotropic slip. AIP Advances, 2020, 10, .	0.6	44
170	Entropy Generation and Natural Convection Flow of Hybrid Nanofluids in a Partially Divided Wavy Cavity Including Solid Blocks. Energies, 2020, 13, 2942.	1.6	44
171	Significance of Arrhenius activation energy in flow and heat transfer of tangent hyperbolic fluid with zero mass flux condition. Microsystem Technologies, 2020, 26, 2517-2526.	1.2	44
172	General periodic flows of fractional Oldroyd-B fluid for an edge. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 368, 181-187.	0.9	43
173	Oblique Stagnation Point Flow of a Casson-Nano Fluid Towards a Stretching Surface with Heat Transfer. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1422-1432.	0.4	43
174	Examination of nanoparticles as a drug carrier on blood flow through catheterized composite stenosed artery with permeable walls. Computer Methods and Programs in Biomedicine, 2016, 133, 83-94.	2.6	43
175	Analysis of Combined Convective and Viscous Dissipation Effects for Peristaltic Flow of Rabinowitsch Fluid Model. Journal of Bionic Engineering, 2017, 14, 182-190.	2.7	43
176	Mathematical study of Electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls. Chinese Journal of Physics, 2021, 71, 300-311.	2.0	43
177	Heat Transfer of Hybrid Nanomaterials Base Maxwell Micropolar Fluid Flow over an Exponentially Stretching Surface. Nanomaterials, 2022, 12, 1207.	1.9	43
178	Effects of temperature dependent viscosity on peristaltic flow of a Jeffrey-six constant fluid in a non-uniform vertical tube. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3950-3964.	1.7	42
179	A comparative analysis on different nanofluid models for the oscillatory stagnation point flow. European Physical Journal Plus, 2016, 131, 1.	1.2	42
180	Heat transport in CNTs based nanomaterial flow of non-Newtonian fluid having electro magnetize plate. AEJ - Alexandria Engineering Journal, 2020, 59, 3431-3442.	3.4	42

#	Article	IF	CITATIONS
181	Entropy generation for the blood flow in an artery with multiple stenosis having a catheter. AEJ - Alexandria Engineering Journal, 2021, 60, 5741-5748.	3.4	42
182	Peristaltic flow of a couple stress fluid under the effect of induced magnetic field in an asymmetric channel. Archive of Applied Mechanics, 2011, 81, 97-109.	1.2	41
183	Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus. Mathematics and Computers in Simulation, 2018, 148, 16-36.	2.4	41
184	Numerical solutions of peristaltic flow of Williamson fluid with radially varying MHD in an endoscope. International Journal for Numerical Methods in Fluids, 2011, 66, 212-220.	0.9	40
185	Investigation of peristaltic flow of Williamson nanofluid in a curved channel with compliant walls. Applied Nanoscience (Switzerland), 2014, 4, 511-521.	1.6	40
186	Theoretical Analysis of Cu-Blood Nanofluid for Metachronal Wave of Cilia Motion in a Curved Channel. IEEE Transactions on Nanobioscience, 2015, 14, 447-454.	2.2	40
187	Single wall carbon nanotube (SWCNT) analysis on peristaltic flow in an inclined tube with permeable walls. International Journal of Heat and Mass Transfer, 2016, 97, 794-802.	2.5	40
188	Impulsion of induced magnetic field for Brownian motion of nanoparticles in peristalsis. Applied Nanoscience (Switzerland), 2016, 6, 359-370.	1.6	40
189	Transportation of heat and mass transport in hydromagnetic stagnation point flow of Carreau nanomaterial: Dual simulations through Runge-Kutta Fehlberg technique. International Communications in Heat and Mass Transfer, 2020, 118, 104858.	2.9	40
190	Non-Newtonian based micropolar fluid flow over nonlinear starching cylinder under Soret and Dufour numbers effects. International Communications in Heat and Mass Transfer, 2021, 127, 105571.	2.9	40
191	Effects of Thermal-Diffusion and Diffusion-Thermo on Oblique Stagnation Point Flow of Couple Stress Casson Fluid Over a Stretched Horizontal Riga Plate with Higher Order Chemical Reaction. Journal of Nanofluids, 2019, 8, 94-102.	1.4	40
192	MHD flow of a viscous fluid on a nonlinear porous shrinking sheet with homotopy analysis method. Applied Mathematics and Mechanics (English Edition), 2009, 30, 1569-1578.	1.9	39
193	Effects of heat and mass transfer on the peristaltic flow of hyperbolic tangent fluid in an annulus. International Journal of Heat and Mass Transfer, 2011, 54, 4360-4369.	2.5	39
194	Three dimensional peristaltic flow of Williamson fluid in a rectangular duct. Indian Journal of Physics, 2013, 87, 1275-1281.	0.9	39
195	Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. Journal of Magnetism and Magnetic Materials, 2013, 346, 142-151.	1.0	39
196	Ferromagnetic effects for peristaltic flow of Cu–water nanofluid for different shapes of nanosize particles. Applied Nanoscience (Switzerland), 2016, 6, 379-385.	1.6	39
197	Biomedical theoretical investigation of blood mediated nanoparticles (Ag-Al2O3/blood) impact on hemodynamics of overlapped stenoticÂartery. Journal of Molecular Liquids, 2017, 248, 809-821.	2.3	39
198	Effect of homogeneous-heterogeneous reactions on ferrofluid in the presence of magnetic dipole along a stretching cylinder. Results in Physics, 2017, 7, 3574-3582.	2.0	39

#	Article	IF	CITATIONS
199	Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid. PLoS ONE, 2018, 13, e0188460.	1.1	39
200	A computational model for suspensions of motile micro-organisms in the flow of ferrofluid. Journal of Molecular Liquids, 2020, 298, 112033.	2.3	39
201	Numerical analysis of unsteady magnetized micropolar fluid flow over a curved surface. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6449-6459.	2.0	39
202	A theoretical study of Prandtl nanofluid in a rectangular duct through peristaltic transport. Applied Nanoscience (Switzerland), 2014, 4, 753-760.	1.6	38
203	Influences of slip and Cu-blood nanofluid in a physiological study of cilia. Computer Methods and Programs in Biomedicine, 2016, 131, 169-180.	2.6	38
204	Numerical study of 3D rotating hybrid SWCNT–MWCNT flow over a convectively heated stretching surface with heat generation/absorption. Physica Scripta, 2019, 94, 075202.	1.2	38
205	Analysis of ferrite nanoparticles in liquid. Pramana - Journal of Physics, 2020, 94, 1.	0.9	38
206	Fluid flow analysis of cilia beating in a curved channel in the presence of magnetic field and heat transfer. Canadian Journal of Physics, 2020, 98, 191-197.	0.4	38
207	Nanoparticle analysis for blood flow of Prandtl fluid model with stenosis. International Nano Letters, 2013, 3, 1.	2.3	37
208	Nano Sutterby Fluid Model for the Peristaltic Flow in Small Intestines. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2491-2499.	0.4	37
209	Influence of Heat and Mass Transfer on Micropolar Fluid of Blood Flow Through a Tapered Stenosed Arteries with Permeable Walls. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1156-1163.	0.4	37
210	Inspiration of induced magnetic field on nano hyperbolic tangent fluid in a curved channel. AIP Advances, 2016, 6, .	0.6	37
211	Numerical investigation into unsteady magnetohydrodynamics flow of micropolar hybrid nanofluid in porous medium. Physica Scripta, 2019, 94, 105220.	1.2	37
212	Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet. Canadian Journal of Physics, 2020, 98, 732-741.	0.4	37
213	Transportation of modified nanofluid flow with time dependent viscosity over a Riga plate: Exponentially stretching. Ain Shams Engineering Journal, 2021, 12, 3967-3973.	3.5	37
214	Effects of slip and heat transfer on the peristaltic flow of a third order fluid in an inclined asymmetric channel. International Journal of Heat and Mass Transfer, 2011, 54, 1654-1664.	2.5	36
215	Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet. Open Physics, 2014, 12, .	0.8	36
216	Inclined magnetic field analysis for metallic nanoparticles submerged in blood with convective boundary condition. Journal of Molecular Liquids, 2017, 230, 61-73.	2.3	36

#	Article	IF	CITATIONS
217	Mathematical model for ciliary-induced transport in MHD flow of Cu-H 2 O nanofluids with magnetic induction. Chinese Journal of Physics, 2017, 55, 947-962.	2.0	36
218	Corrugated walls analysis in microchannels through porous medium under Electromagnetohydrodynamic (EMHD) effects. Results in Physics, 2018, 9, 171-182.	2.0	36
219	Carbon nanotubes effects in magneto nanofluid flow over a curved stretching surface with variable viscosity. Microsystem Technologies, 2019, 25, 2881-2888.	1.2	36
220	Flow analysis by Cattaneo–Christov heat flux in the presence of Thomson and Troian slip condition. Applied Nanoscience (Switzerland), 2020, 10, 4673-4687.	1.6	36
221	Mixed convection hybridized micropolar nanofluid with triple stratification and Cattaneo–Christov heat flux model. Physica Scripta, 2021, 96, 075205.	1.2	36
222	Fluctuating flow of a third-grade fluid on a porous plate in a rotating medium. International Journal of Non-Linear Mechanics, 2001, 36, 901-916.	1.4	35
223	Thermal and velocity slip effects on the peristaltic flow of a six constant Jeffrey's fluid model. International Journal of Heat and Mass Transfer, 2012, 55, 3964-3970.	2.5	35
224	Mixed Convective Magnetohydrodynamic Peristaltic Flow of a Jeffrey Nanofluid with Newtonian Heating. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2013, 68, 433-441.	0.7	35
225	Nanoparticles analysis on the blood flow through a tapered catheterized elastic artery with overlapping stenosis. European Physical Journal Plus, 2014, 129, 1.	1.2	35
226	Unsteady mixed convection flow of nanofluid on a rotating cone with magnetic field. Applied Nanoscience (Switzerland), 2014, 4, 405-414.	1.6	35
227	Entropy Analysis of the Peristaltic Flow of Hybrid Nanofluid Inside an Elliptic Duct with Sinusoidally Advancing Boundaries. Entropy, 2021, 23, 732.	1.1	35
228	Casson nanoliquid flow with Cattaneo-Christov flux analysis over a curved stretching/shrinking channel. Case Studies in Thermal Engineering, 2021, 27, 101146.	2.8	35
229	Slip examination on the wall of tapered stenosed artery with emerging application of nanoparticles. International Journal of Thermal Sciences, 2016, 109, 401-412.	2.6	34
230	Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field. Journal of Molecular Liquids, 2016, 224, 1210-1219.	2.3	34
231	Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid. Journal of Colloid and Interface Science, 2017, 501, 304-310.	5.0	34
232	A biomedical solicitation examination of nanoparticles as drug agents to minimize the hemodynamics of a stenotic channel. European Physical Journal Plus, 2017, 132, 1.	1.2	34
233	Mathematical analysis of ferromagnetic fluid embedded in a porous medium. Results in Physics, 2017, 7, 2361-2368.	2.0	34
234	Peristaltic transport of a Jeffrey fluid with double-diffusive convection in nanofluids in the presence of inclined magnetic field. International Journal of Geometric Methods in Modern Physics, 2018, 15, 1850181.	0.8	34

#	Article	IF	CITATIONS
235	Buongiorno's Nanofluid Model over a Curved Exponentially Stretching Surface. Processes, 2019, 7, 665.	1.3	34
236	Utilization of Cu-nanoparticles as medication agent to reduce atherosclerotic lesions of a bifurcated artery having compliant walls. Computer Methods and Programs in Biomedicine, 2020, 184, 105123.	2.6	34
237	Theoretical treatment of radiative Oldroyd-B nanofluid with microorganism pass an exponentially stretching sheet. Surfaces and Interfaces, 2020, 21, 100686.	1.5	34
238	Simulation of magnetic dipole on gyrotactic ferromagnetic fluid flow with nonlinear thermal radiation. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2053-2067.	2.0	34
239	Influence of heat and mass transfer on a peristaltic motion of a Jeffrey-six constant fluid in an annulus. Heat and Mass Transfer, 2010, 46, 485-493.	1.2	33
240	Series solution of unsteady peristaltic flow of a Carreau fluid in eccentric cylinders. Ain Shams Engineering Journal, 2014, 5, 293-304.	3.5	33
241	Thermal and velocity slip effects on the MHD peristaltic flow with carbon nanotubes in an asymmetric channel: application of radiation therapy. Applied Nanoscience (Switzerland), 2014, 4, 849-857.	1.6	33
242	Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of apt (tending) magnetic field. Journal of Magnetism and Magnetic Materials, 2014, 358-359, 183-191.	1.0	33
243	Blood flow analysis of Prandtl fluid model in tapered stenosed arteries. Ain Shams Engineering Journal, 2014, 5, 1267-1275.	3.5	33
244	MODELING NANOPARTICLE GEOMETRY EFFECTS ON PERISTALTIC PUMPING OF MEDICAL MAGNETOHYDRODYNAMIC NANOFLUIDS WITH HEAT TRANSFER. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650088.	0.3	33
245	MHD convective heat transfer of nanofluids through a flexible tube with buoyancy: A study of nano-particle shape effects. Advanced Powder Technology, 2017, 28, 453-462.	2.0	33
246	Influence of Lorentz force and Induced Magnetic Field Effects on Casson Micropolar nanofluid flow over a permeable curved stretching/shrinking surface under the stagnation region. Surfaces and Interfaces, 2020, 21, 100766.	1.5	33
247	Theoretical study of unsteady oblique stagnation point based Jeffrey nanofluid flow over an oscillatory stretching sheet. Advances in Mechanical Engineering, 2020, 12, 168781402097188.	0.8	33
248	Darcy–Forchheimer flow under rotating disk and entropy generation with thermal radiation and heat source/sink. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2313-2328.	2.0	33
249	Influence of heat transfer on peristaltic transport of a Johnson–Segalman fluid in an inclined asymmetric channel. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 2860-2877.	1.7	32
250	Effects of partial slip on a fourth-grade fluid with variable viscosity: An analytic solution. Nonlinear Analysis: Real World Applications, 2010, 11, 856-868.	0.9	32
251	Influence of temperature dependent viscosity on peristaltic transport of a Newtonian fluid: Application of an endoscope. Applied Mathematics and Computation, 2010, 216, 3606-3619.	1.4	32
252	Radiation effects on the thermal boundary layer flow of a micropolar fluid towards a permeable stretching sheet. Journal of the Franklin Institute, 2013, 350, 194-210.	1.9	32

#	Article	IF	CITATIONS
253	Effects of single and multi-walled carbon nano tubes on water and engine oil based rotating fluids with internal heating. Advanced Powder Technology, 2017, 28, 1991-2002.	2.0	32
254	Non-aligned stagnation point flow of radiating Casson fluid over a stretching surface. AEJ - Alexandria Engineering Journal, 2018, 57, 939-946.	3.4	32
255	Novel idea about the peristaltic flow of heated Newtonian fluid in elliptic duct having ciliated walls. AEJ - Alexandria Engineering Journal, 2022, 61, 2697-2707.	3.4	32
256	Analysis of MHD Williamson Nano Fluid Flow over a Heated Surface. Journal of Applied Fluid Mechanics, 2016, 9, 729-739.	0.4	32
257	Stability analysis of triple solutions of Casson nanofluid past on a vertical exponentially stretching/shrinking sheet. Advances in Mechanical Engineering, 2021, 13, 168781402110596.	0.8	32
258	The Rayleigh Stokes problem for rectangular pipe inÂMaxwell and second grade fluid. Meccanica, 2008, 43, 495-504.	1.2	31
259	Stagnation Flow of a Jeffrey Fluid over a Shrinking Sheet. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 540-548.	0.7	31
260	Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis. Communications in Theoretical Physics, 2012, 57, 133-140.	1.1	31
261	MHD Boundary Layer Flow of a Nanofluid Passed through a Porous Shrinking Sheet with Thermal Radiation. Journal of Aerospace Engineering, 2015, 28, .	0.8	31
262	Simultaneous effects of single wall carbon nanotube and effective variable viscosity for peristaltic flow through annulus having permeable walls. Results in Physics, 2017, 7, 667-676.	2.0	31
263	Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium. Journal of Hydrodynamics, 2018, 30, 296-306.	1.3	31
264	Nanoparticles shape effects on peristaltic transport of nanofluids in presence of magnetohydrodynamics. Microsystem Technologies, 2019, 25, 283-294.	1.2	31
265	Computational analysis of water based <i>Cu</i> - <i>Al</i> ₂ <i>O</i> ₃ / <i>H</i> ₂ <i>O</i> flow over a vertical wedge. Advances in Mechanical Engineering, 2020, 12, 168781402096832.	0.8	31
266	Mechanics of non-Newtonian blood flow in an artery having multiple stenosis and electroosmotic effects. Science Progress, 2021, 104, 003685042110316.	1.0	31
267	Series solutions for the stagnation flow of a second-grade fluid over a shrinking sheet. Applied Mathematics and Mechanics (English Edition), 2009, 30, 1255-1262.	1.9	30
268	Mixed Convection Heat Transfer in Micropolar Nanofluid over a Vertical Slender Cylinder. Chinese Physics Letters, 2012, 29, 124701.	1.3	30
269	Simulation of peristaltic flow of chyme in small intestine for couple stress fluid. Meccanica, 2014, 49, 325-334.	1.2	30
270	Impulsion of nanoparticles as a drug carrier for the theoretical investigation of stenosed arteries with induced magnetic effects. Journal of Magnetism and Magnetic Materials, 2016, 410, 230-241.	1.0	30

#	Article	IF	CITATIONS
271	Impinging of metallic nanoparticles along with the slip effects through a porous medium with MHD. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 2535-2560.	0.8	30
272	Heat transfer analysis of peristaltic flow of a Phan-Thien–Tanner fluid model due to metachronal wave of cilia. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1925-1933.	1.4	30
273	An oscillating hydromagnetic non-Newtonian flow in a rotating system. Applied Mathematics Letters, 2004, 17, 609-614.	1.5	29
274	Thin Film Flow of a Second Grade Fluid over a Stretching/Shrinking Sheet with Variable Temperature-Dependent Viscosity. Chinese Physics Letters, 2010, 27, 034704.	1.3	29
275	Peristaltic Sisko nano fluid in an asymmetric channel. Applied Nanoscience (Switzerland), 2014, 4, 663-673.	1.6	29
276	Mathematical model for the peristaltic flow of Jeffrey fluid with nanoparticles phenomenon through a rectangular duct. Applied Nanoscience (Switzerland), 2014, 4, 613-624.	1.6	29
277	Effect of time dependent viscosity and radiation efficacy on a non-Newtonian fluid flow. Heliyon, 2019, 5, e01203.	1.4	29
278	Application of CNT-based micropolar hybrid nanofluid flow in the presence of Newtonian heating. Applied Nanoscience (Switzerland), 2020, 10, 5265-5277.	1.6	29
279	Flow and heat transfer investigation of bio–convective hybrid nanofluid with triple stratification effects. Physica Scripta, 2021, 96, 065210.	1.2	29
280	Free Convective MHD Peristaltic Flow of a Jeffrey Nanofluid with Convective Surface Boundary Condition: A BiomedicineNano Model. Current Nanoscience, 2014, 10, 432-440.	0.7	29
281	Metachronal beating of cilia under influence of Hartmann layer and heat transfer. European Physical Journal Plus, 2014, 129, 1.	1.2	28
282	Numerical analysis of Ag–CuO/water rotating hybrid nanofluid with heat generation and absorption. Canadian Journal of Physics, 2019, 97, 644-650.	0.4	28
283	Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effects. Electrophoresis, 2020, 41, 1198-1205.	1.3	28
284	Reactivity of bifurcation angle and electroosmosis flow for hemodynamic flow through aortic bifurcation and stenotic wall with heat transfer. Physica Scripta, 2021, 96, 015216.	1.2	28
285	Series Solutions for the Peristaltic Flow of a Tangent Hyperbolic Fluid in a Uniform Inclined Tube. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 887-895.	0.7	27
286	Significance of Nanofluid and Partial Slip on the Peristaltic Transport of a Non-Newtonian Fluid with Different Wave Forms. IEEE Nanotechnology Magazine, 2014, 13, 375-385.	1.1	27
287	Exact solution of peristaltic flow of biviscosity fluid in an endoscope: A note. AEJ - Alexandria Engineering Journal, 2014, 53, 449-454.	3.4	27
288	Oblique stagnation flow of Jeffery fluid over a stretching convective surface. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 454-471.	1.6	27

#	Article	IF	CITATIONS
289	A Clot Model Examination: with Impulsion of Nanoparticles under Influence of Variable Viscosity and Slip Effects. Communications in Theoretical Physics, 2017, 68, 667.	1.1	27
290	Stagnation flow of hybrid nanoparticles with MHD and slip effects. Heat Transfer - Asian Research, 2020, 49, 180-196.	2.8	27
291	Micropolar fluid flow with temperatureâ€dependent transport properties. Heat Transfer, 2020, 49, 2375-2389.	1.7	27
292	Peristaltic flow of a heated Jeffrey fluid inside an elliptic duct: streamline analysis. Applied Mathematics and Mechanics (English Edition), 2021, 42, 583-592.	1.9	27
293	A Combined Convection Carreau–Yasuda Nanofluid Model over a Convective Heated Surface near a Stagnation Point: A Numerical Study. Mathematical Problems in Engineering, 2021, 2021, 1-14.	0.6	27
294	Single wall carbon nanotube (SWCNT) examination on blood flow through a multiple stenosed artery with variable nanofluid viscosity. AIP Advances, 2015, 5, .	0.6	26
295	Ferromagnetic CNT suspended H2O+Cu nanofluid analysis through composite stenosed arteries with permeable wall. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 72, 70-76.	1.3	26
296	Effects of nanoparticles on the peristaltic motion of tangent hyperbolic fluid model in an annulus. AEJ - Alexandria Engineering Journal, 2015, 54, 843-851.	3.4	26
297	Role of Inclined Magnetic Field and Copper Nanoparticles on Peristaltic Flow of Nanofluid through Inclined Annulus: Application of the Clot Model. Communications in Theoretical Physics, 2017, 67, 704.	1.1	26
298	Transient peristaltic diffusion of nanofluids: A model of micropumps in medical engineering. Journal of Hydrodynamics, 2018, 30, 1001-1011.	1.3	26
299	Evaluation of silkâ€based bioink during pre and post 3D bioprinting: A review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 279-293.	1.6	26
300	Mathematical computations for Peristaltic flow of heated non-Newtonian fluid inside a sinusoidal elliptic duct. Physica Scripta, 2020, 95, 105009.	1.2	26
301	Unsteady three dimensional bioconvective flow of Maxwell nanofluid over an exponentially stretching sheet with variable thermal conductivity and chemical reaction. International Journal of Ambient Energy, 2022, 43, 6542-6552.	1.4	26
302	Buoyancy and metallic particle effects on an unsteady water-based fluid flow along a vertically rotating cone. European Physical Journal Plus, 2014, 129, 1.	1.2	25
303	The influence of wall flexibility on unsteady peristaltic flow of Prandtl fluid in a three dimensional rectangular duct. Applied Mathematics and Computation, 2014, 241, 389-400.	1.4	25
304	Metachronal Wave of Cilia Transport in a Curved Channel. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 33-38.	0.7	25
305	Theoretical Analysis of Metallic Nanoparticles on Blood Flow Through Tapered Elastic Artery With Overlapping Stenosis. IEEE Transactions on Nanobioscience, 2015, 14, 417-428.	2.2	25
306	Stimulation of metallic nanoparticles under the impact of radial magnetic field through eccentric cylinders: A useful application in biomedicine. Journal of Molecular Liquids, 2017, 225, 365-381.	2.3	25

#	Article	IF	CITATIONS
307	Biomathematical study of time-dependent flow of a Carreau nanofluid through inclined catheterized arteries with overlapping stenosis. Journal of Central South University, 2017, 24, 2725-2744.	1.2	25
308	Computational Study of MHD Nanofluid Flow Possessing Micro-Rotational Inertia over a Curved Surface with Variable Thermophysical Properties. Processes, 2019, 7, 387.	1.3	25
309	Existence and stability of heat and fluid flow in the presence of nanoparticles along a curved surface by mean of dual nature solution. Applied Mathematics and Computation, 2019, 353, 66-81.	1.4	25
310	Physical aspects of convective and radiative molecular theory of liquid originated nanofluid flow in the existence of variable properties. Physica Scripta, 2021, 96, 035219.	1.2	25
311	Thermal analysis of oblique stagnation point flow with slippage on second-order fluid. Journal of Thermal Analysis and Calorimetry, 2022, 147, 3839-3851.	2.0	25
312	Mix convection non- boundary layer flow of unsteady MHD oblique stagnation point flow of nanofluid. International Communications in Heat and Mass Transfer, 2021, 124, 105285.	2.9	25
313	Non-Aligned Ethylene-Glycol 30% Based Stagnation Point Fluid over a Stretching Surface with Hematite Nano Particles. Journal of Applied Fluid Mechanics, 2016, 9, 1359-1366.	0.4	25
314	Flow of a Jeffery-Six Constant Fluid Between Coaxial Cylinders with Heat Transfer Analysis. Communications in Theoretical Physics, 2011, 56, 345-351.	1.1	24
315	Axisymmetric Stagnation Flow of a Micropolar Nanofluid in a Moving Cylinder. Mathematical Problems in Engineering, 2012, 2012, 1-18.	0.6	24
316	Peristaltic Flow of a Carreau Fluid in a Rectangular Duct. Journal of Fluids Engineering, Transactions of the ASME, 2012, 134, .	0.8	24
317	Influence of inclined magnetic field on peristaltic flow of a Jeffrey fluid with heat and mass transfer in an inclined symmetric or asymmetric channel. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 33-44.	0.8	24
318	Non-orthogonal stagnation point flow of a micropolar second grade fluid towards a stretching surface with heat transfer. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 586-595.	2.7	24
319	The Effect of Variable Viscosities on Micropolar Flow of Two Nanofluids. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2016, 71, 1121-1129.	0.7	24
320	Numerical simulation of the forced convective nanofluid flow through an annulus sector duct. Chinese Journal of Physics, 2017, 55, 1400-1411.	2.0	24
321	An improvement in heat transfer for rotating flow of hybrid nanofluid: a numerical study. Canadian Journal of Physics, 2018, 96, 1420-1430.	0.4	24
322	Transportation of nanoparticles investigation as a drug agent to attenuate the atherosclerotic lesion under the wall properties impact. Chaos, Solitons and Fractals, 2018, 112, 52-65.	2.5	24
323	A ballon model analysis with Cu-blood medicated nanoparticles as drug agent through overlapped curved stenotic artery having compliant walls. Microsystem Technologies, 2019, 25, 2949-2962.	1.2	24
324	Analysis of unsteady non-axisymmetric Homann stagnation point flow of nanofluid and possible existence of multiple solutions. Physica A: Statistical Mechanics and Its Applications, 2020, 554, 123920.	1.2	24

#	Article	IF	CITATIONS
325	The effects of zero and high shear rates viscosities on the transportation of heat and mass in boundary layer regions: A non-Newtonian fluid with Carreau model. Journal of Molecular Liquids, 2020, 317, 113991.	2.3	24
326	Finite element simulations for natural convective flow of nanofluid in a rectangular cavity having corrugated heated rods. Journal of Thermal Analysis and Calorimetry, 2021, 143, 4169-4181.	2.0	24
327	Theoretical Investigation of MHD Nanofluid Flow Over a Rotating Cone: An Optimal Solutions. Information Sciences Letters, 2014, 3, 55-62.	1.0	24
328	Nanoparticle Analysis for Non-Orthogonal Stagnation Point Flow of a Third Order Fluid Towards a Stretching Surface. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2737-2747.	0.4	23
329	Analytical Solutions of Unsteady Blood Flow of Jeffery Fluid Through Stenosed Arteries with PermeableWalls. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2013, 68, 489-498.	0.7	23
330	Boundary layer stagnation-point flow of a third grade fluid over an exponentially stretching sheet. Brazilian Journal of Chemical Engineering, 2013, 30, 611-618.	0.7	23
331	Exact Solution for Peristaltic Flow of Jeffrey Fluid Model in a Three Dimensional Rectangular Duct having Slip at the Walls. Applied Bionics and Biomechanics, 2014, 11, 81-90.	0.5	23
332	Bio mathematical venture for the metallic nanoparticles due to ciliary motion. Computer Methods and Programs in Biomedicine, 2016, 134, 43-51.	2.6	23
333	Shape effect of Cu-nanoparticles in unsteady flow through curved artery with catheterized stenosis. Results in Physics, 2017, 7, 677-689.	2.0	23
334	Aspects of developed heat and mass flux models on 3D flow of Eyring-Powell fluid. Results in Physics, 2017, 7, 3910-3917.	2.0	23
335	Enhanced transport properties and its theoretical analysis in two-phase hybrid nanofluid. Applied Nanoscience (Switzerland), 2022, 12, 309-316.	1.6	23
336	Analysis of heat and mass transfer on the peristaltic flow in a duct with sinusoidal walls: Exact solutions of coupled PDEs. AEJ - Alexandria Engineering Journal, 2022, 61, 4107-4117.	3.4	23
337	Inspiration of Induced Magnetic Field on a Blood Flow of Prandtl Nanofluid Model with Stenosis. Current Nanoscience, 2014, 10, 753-765.	0.7	23
338	Impact of Joule heating and multiple slips on a Maxwell nanofluid flow past a slendering surface. Communications in Theoretical Physics, 2022, 74, 015001.	1.1	23
339	Computational analysis of induced magnetohydrodynamic non-Newtonian nanofluid flow over nonlinear stretching sheet. Progress in Reaction Kinetics and Mechanism, 2022, 47, 146867832110727.	1.1	23
340	MHD rotating flow of a third-grade fluid on an oscillating porous plate. Acta Mechanica, 2001, 152, 177-190.	1.1	22
341	Unsteady hydromagnetic rotating flow of a conducting second grade fluid. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 626-641.	0.7	22
342	Series Solutions of Boundary Layer Flow of a Micropolar Fluid Near the Stagnation Point Towards a Shrinking Sheet. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 575-582.	0.7	22

#	Article	IF	CITATIONS
343	Application of Rabinowitsch Fluid Model for the Mathematical Analysis of Peristaltic Flow in a Curved Channel. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 513-520.	0.7	22
344	Influence of Metallic Nanoparticles on Blood Flow Through Arteries Having Both Stenosis and Aneurysm. IEEE Transactions on Nanobioscience, 2015, 14, 668-679.	2.2	22
345	Exploration of single wall carbon nanotubes for the peristaltic motion in a curved channel with variable viscosity. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 117-125.	0.8	22
346	Influence of metallic nanoparticles in water driven along a wavy circular cylinder. Chinese Journal of Physics, 2020, 63, 168-185.	2.0	22
347	Consequences of Darcy–Forchheimer and Cattaneo– Christov on a radiative three-dimensional Maxwell fluid flow over a vertical surface. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118, 1-11.	2.7	22
348	Numerical analysis for the effects of heat transfer in modified square duct with heated obstacle inside it. International Communications in Heat and Mass Transfer, 2021, 129, 105666.	2.9	22
349	Impact of heat and mass transfer on the Peristaltic flow of non-Newtonian Casson fluid inside an elliptic conduit: Exact solutions through novel technique. Chinese Journal of Physics, 2022, 78, 194-206.	2.0	22
350	Effects of induced magnetic field on peristaltic flow of Johnson-Segalman fluid in a vertical symmetric channel. Applied Mathematics and Mechanics (English Edition), 2010, 31, 969-978.	1.9	21
351	Boundary Layer Flow of Second Grade Fluid in a Cylinder with Heat Transfer. Mathematical Problems in Engineering, 2012, 2012, 1-13.	0.6	21
352	The mathematical analysis for peristaltic flow of nano fluid in a curved channel with compliant walls. Applied Nanoscience (Switzerland), 2014, 4, 85-92.	1.6	21
353	Biofluidics Study in Digestive System with Thermal Conductivity of Shape Nanosize H2O+Cu Nanoparticles. Journal of Bionic Engineering, 2015, 12, 656-663.	2.7	21
354	Time-Dependent Second-Order Viscoelastic Fluid Flow on Rotating Cone with Heat Generation and Chemical Reaction. Journal of Aerospace Engineering, 2016, 29, .	0.8	21
355	Transverse thermopherotic MHD Oldroyd-B fluid with Newtonian heating. Results in Physics, 2018, 8, 686-693.	2.0	21
356	Insight into the cilia motion of electrically conducting Cu-blood nanofluid through a uniform curved channel when entropy generation is significant. AEJ - Alexandria Engineering Journal, 2022, 61, 10613-10630.	3.4	21
357	Peristaltic flow of Walter's B fluid in a uniform inclined tube. Journal of Biorheology, 2010, 24, 22-28.	0.2	20
358	Effects of Heat and Mass Transfer on Peristaltic Flow of Carreau Fluid in a Vertical Annulus. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 781-792.	0.7	20
359	Peristaltic flow of a Tangent hyperbolic fluid in an inclined asymmetric channel with slip and heat transfer. Progress in Computational Fluid Dynamics, 2012, 12, 363.	0.1	20
360	Intestinal Flow of a Couple Stress Nanofluid in Arteries. IEEE Transactions on Nanobioscience, 2013, 12, 332-339.	2.2	20

#	Article	IF	CITATIONS
361	Trapping study of nanofluids in an annulus with cilia. AIP Advances, 2015, 5, 127204.	0.6	20
362	Oblique Stagnation Point Flow of Carbon Nano Tube Based Fluid Over a Convective Surface. Journal of Computational and Theoretical Nanoscience, 2015, 12, 605-612.	0.4	20
363	Rheological properties of Reiner-Rivlin fluid model for blood flow through tapered artery with stenosis. Journal of the Egyptian Mathematical Society, 2016, 24, 138-142.	0.6	20
364	Consequences of blood mediated nano transportation as drug agent to attenuate the atherosclerotic lesions with permeability impacts. Journal of Molecular Liquids, 2018, 262, 565-575.	2.3	20
365	Pressure induced band-gap tuning in KNbO3 for piezoelectric applications: Quantum DFT-GGA approach. Chinese Journal of Physics, 2018, 56, 1481-1487.	2.0	20
366	Series solution of unsteady MHD oblique stagnation point flow of copper-water nanofluid flow towards Riga plate. Heliyon, 2020, 6, e04689.	1.4	20
367	Mixed Convection in Unsteady Stagnation Point Flow of Maxwell Fluid Subject to Modified Fourier's Law. Arabian Journal for Science and Engineering, 2020, 45, 9439-9447.	1.7	20
368	Mathematical analysis of heat and mass transfer in a Maxwell fluid with double stratification. Physica Scripta, 2021, 96, 025202.	1.2	20
369	Theoretical study of non-Newtonian micropolar nanofluid flow over an exponentially stretching surface with free stream velocity. Advances in Mechanical Engineering, 2022, 14, 168781322211077.	0.8	20
370	Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis. Chinese Physics Letters, 2010, 27, 068701.	1.3	19
371	Endoscopic effects on the peristaltic flow of an Eyring–Powell fluid. Meccanica, 2012, 47, 687-697.	1.2	19
372	Nano Particle Analysis for the Steady Blood Flow of Jeffrey Fluid with Stenosis with New Analytical Techniques. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2751-2765.	0.4	19
373	Non-Newtonian model study for blood flow through a tapered artery with a stenosis. AEJ - Alexandria Engineering Journal, 2016, 55, 321-329.	3.4	19
374	Boundary Layer Flow of Rotating Two Phase Nanofluid Over a Stretching Surface. Heat Transfer - Asian Research, 2016, 45, 285-298.	2.8	19
375	Heat transfer analysis of CNT suspended nanofluid through annulus sector duct. International Journal of Mechanical Sciences, 2017, 122, 362-369.	3.6	19
376	Variable fluid properties analysis with water based CNT nanofluid over a sensor sheet: Numerical solution. Journal of Molecular Liquids, 2017, 232, 471-477.	2.3	19
377	A mathematical analysis of time dependent flow on a rotating cone in a rheological fluid. Propulsion and Power Research, 2017, 6, 233-241.	2.0	19
378	Eigenfunction expansion method for peristaltic flow of hybrid nanofluid flow having single-walled carbon nanotube and multi-walled carbon nanotube in a wavy rectangular duct. Science Progress, 2021, 104, 003685042110502.	1.0	19

#	Article	IF	CITATIONS
379	Inspections of unsteady micropolar nanofluid model over exponentially stretching curved surface with chemical reaction. Waves in Random and Complex Media, 0, , 1-22.	1.6	19
380	Analytic solution of Stokes second problem for second-grade fluid. Mathematical Problems in Engineering, 2006, 2006, 1-8.	0.6	18
381	Peristaltic flow of Walter's B fluid in endoscope. Applied Mathematics and Mechanics (English) Tj ETQq1 1 0	.784314 rg 1.9	gBT /Overlock
382	Influence of Heat and Mass Transfer on Newtonian Biomagnetic Fluid of Blood Flow Through a Tapered Porous Arteries with a Stenosis. Transport in Porous Media, 2012, 91, 81-100.	1.2	18
383	Analytical Study of Rotating Non-Newtonian Nanofluid on a Rotating Cone. Journal of Thermophysics and Heat Transfer, 2014, 28, 295-302.	0.9	18
384	Theoretical examination of nanoparticles as a drug carrier with slip effects on the wall of stenosed arteries. International Journal of Heat and Mass Transfer, 2016, 93, 1137-1149.	2.5	18
385	Entropy generation analysis for the peristaltic flow of Cu-water nanofluid in a tube with viscous dissipation. Journal of Hydrodynamics, 2017, 29, 135-143.	1.3	18
386	Shape factor and sphericity features examination of Cu and Cu-Al2O3/blood through atherosclerotic artery under the impact of wall characteristic. Journal of Molecular Liquids, 2018, 271, 361-372.	2.3	18
387	Peristaltic pumping with double diffusive natural convective nanofluid in a lopsided channel with accounting thermophoresis and Brownian moment. Microsystem Technologies, 2019, 25, 1217-1226.	1.2	18
388	On the stagnation point flow of nanomaterial with base viscoelastic micropolar fluid over a stretching surface. AEJ - Alexandria Engineering Journal, 2020, 59, 1751-1760.	3.4	18
389	Convective heat transfer for Peristaltic flow of SWCNT inside a sinusoidal elliptic duct. Science Progress, 2021, 104, 003685042110236.	1.0	18
390	Assisting and Opposing Stagnation Point Pseudoplastic Nano Liquid Flow towards a Flexible Riga Sheet: A Computational Approach. Mathematical Problems in Engineering, 2021, 2021, 1-14.	0.6	18
391	Heat enhancement analysis of the hybridized micropolar nanofluid with Cattaneo–Christov and stratification effects. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 943-955.	1.1	18
392	Entropy generation and induced magnetic field in pseudoplastic nanofluid flow near a stagnant point. Scientific Reports, 2021, 11, 23736.	1.6	18
393	Transient bioconvection and activation energy impacts on Casson nanofluid with gyrotactic microorganisms and nonlinear radiation. Waves in Random and Complex Media, 0, , 1-20.	1.6	18
394	Peristaltic transport and heat transfer of a MHD Newtonian fluid with variable viscosity. International Journal for Numerical Methods in Fluids, 2010, 63, 1375-1393.	0.9	17
395	Simulation of heat and mass transfer on peristaltic flow of hyperbolic tangent fluid in an asymmetric channel. International Journal for Numerical Methods in Fluids, 2012, 70, 1475-1493.	0.9	17
396	Peristaltic flow of a micropolar fluid with nano particles in small intestine. Applied Nanoscience (Switzerland), 2013, 3, 461-468.	1.6	17

#	Article	IF	CITATIONS
397	Peristaltic flow of a Jeffrey fluid in a rectangular duct having compliant walls. Chemical Industry and Chemical Engineering Quarterly, 2013, 19, 399-409.	0.4	17
398	Thermo-diffusion effects on MHD oblique stagnation-point flow of a viscoelastic fluid over a convective surface. European Physical Journal Plus, 2014, 129, 1.	1.2	17
399	Analysis of bifurcation dynamics of streamlines topologies for pseudoplastic shear thinning fluid: Biomechanics application. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 122502.	1.2	17
400	3D MHD cross flow over an exponential stretching porous surface. Heat Transfer, 2020, 49, 1256-1280.	1.7	17
401	Chemically reactive swirling flow of viscoelastic nanofluid due to rotating disk with thermal radiations. Applied Nanoscience (Switzerland), 2020, 10, 5219-5232.	1.6	17
402	Rosseland analysis for ferromagnetic fluid in presence of gyrotactic microorganisms and magnetic dipole. Ain Shams Engineering Journal, 2020, 11, 1295-1308.	3.5	17
403	Transient flow of Maxwell Nanofluid Over a Shrinking Surface: Numerical Solutions and Stability Analysis. Surfaces and Interfaces, 2021, 22, 100829.	1.5	17
404	Finite element simulation for free convective flow in an adiabatic enclosure: Study of Lorentz forces and partially thermal walls. Case Studies in Thermal Engineering, 2021, 25, 100981.	2.8	17
405	Heat and mass transfer investigation of a chemically reactive Burgers nanofluid with an induced magnetic field over an exponentially stretching surface. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892110349.	1.4	17
406	A Balloon Model Examination with Impulsion of Cu-Nanoparticles as Drug Agent through Stenosed Tapered Elastic Artery. Journal of Applied Fluid Mechanics, 2017, 10, 1773-1783.	0.4	17
407	Finite element analysis for CuO/water nanofluid in a partially adiabatic enclosure: Inclined Lorentz forces and porous medium resistance. AEJ - Alexandria Engineering Journal, 2022, 61, 6477-6488.	3.4	17
408	Effects of Heat Transfer on the Stagnation Flow of a Third-Order Fluid over a Shrinking Sheet. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 969-994.	0.7	16
409	Peristaltic flow of a Sisko fluid in an endoscope: analytical and numerical solutions. International Journal of Computer Mathematics, 2011, 88, 1013-1023.	1.0	16
410	Numerical and analytical simulation of the peristaltic flow of Jeffrey fluid with Reynold's model of viscosity. International Journal of Numerical Methods for Heat and Fluid Flow, 2012, 22, 458-472.	1.6	16
411	Mixed convective heat and mass transfer on a peristaltic flow of a nonâ€Newtonian fluid in a vertical asymmetric channel. Heat Transfer - Asian Research, 2012, 41, 613-633.	2.8	16
412	Flows of Carreau fluid with pressure dependent viscosity in a variable porous medium: Application of polymer melt. AEJ - Alexandria Engineering Journal, 2014, 53, 427-435.	3.4	16
413	Peristaltic Flow of Viscous Fluid in a Rectangular Duct with Compliant Walls. Computational Mathematics and Modeling, 2014, 25, 404-415.	0.2	16
414	Physiological flow of Carreau fluid due to ciliary motion. AIP Advances, 2016, 6, .	0.6	16

#	Article	IF	CITATIONS
415	Entropy Generation Analysis in Convective Ferromagnetic Nano Blood Flow Through a Composite Stenosed Arteries with Permeable Wall. Communications in Theoretical Physics, 2017, 67, 554.	1.1	16
416	Numerical study of non-Newtonian fluid flow over an exponentially stretching surface: an optimal HAM validation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 1589-1596.	0.8	16
417	Hybrid Isothermal Model for the Ferrohydrodynamic Chemically Reactive Species. Communications in Theoretical Physics, 2019, 71, 384.	1.1	16
418	Impact of magnetic dipole on a thermally stratified ferrofluid past a stretchable surface. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2019, 233, 177-183.	1.4	16
419	Bioconvection through interaction of Lorentz force and gyrotactic microorganisms in transverse transportation of rheological fluid. Journal of Thermal Analysis and Calorimetry, 2021, 145, 2675-2689.	2.0	16
420	Squeezing Flow of Carbon Nanotubes-Based Nanofluid in Channel Considering Temperature-Dependent Viscosity: A Numerical Approach. Arabian Journal for Science and Engineering, 2021, 46, 2047-2053.	1.7	16
421	Microphysical analysis for peristaltic flow of SWCNT and MWCNT carbon nanotubes inside a catheterised artery having thrombus: irreversibility effects with entropy. International Journal of Exergy, 2021, 34, 301.	0.2	16
422	EFFECTS OF HALL CURRENT ON UNSTEADY FLOW OF A SECOND GRADE FLUID IN A ROTATING SYSTEM. Chemical Engineering Communications, 2005, 192, 1272-1284.	1.5	15
423	Exact and numerical simulation of peristaltic flow of a nonâ€Newtonian fluid with inclined magnetic field in an endoscope. International Journal for Numerical Methods in Fluids, 2011, 66, 919-934.	0.9	15
424	Simulation of thermal and velocity slip on the peristaltic flow of a Johnson–Segalman fluid in an inclined asymmetric channel. International Journal of Heat and Mass Transfer, 2012, 55, 5495-5502.	2.5	15
425	Application of Rabinowitsch Fluid Model in Peristalsis. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2014, 69, 473-480.	0.7	15
426	Unsteady Oscillatory Stagnation Point Flow of a Jeffrey Fluid. Journal of Aerospace Engineering, 2014, 27, 636-643.	0.8	15
427	Peristaltic impulsion of MHD biviscosity fluid in a lopsided channel: Closed-form solution. European Physical Journal Plus, 2014, 129, 1.	1.2	15
428	MHD boundary layer flow over an unsteady shrinking sheet: analytical and numerical approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37, 1339-1346.	0.8	15
429	Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects. Chinese Physics B, 2016, 25, 114701.	0.7	15
430	Impact of curvature on the mixed convective peristaltic flow of shear thinning fluid with nanoparticles. Canadian Journal of Physics, 2016, 94, 1319-1330.	0.4	15
431	Numerical analysis of 3D micropolar nanofluid flow induced by an exponentially stretching surface embedded in a porous medium. European Physical Journal Plus, 2017, 132, 1.	1.2	15
432	Heat transfer analysis with temperature-dependent viscosity for the peristaltic flow of nano fluid with shape factor over heated tube. International Journal of Hydrogen Energy, 2017, 42, 25088-25101.	3.8	15

#	Article	IF	CITATIONS
433	Heat Transfer Analysis for Three-Dimensional Stagnation-Point Flow of Water-Based Nanofluid Over an Exponentially Stretching Surface. Journal of Heat Transfer, 2018, 140, .	1.2	15
434	Entropy generation and natural convection flow of a suspension containing nano-encapsulated phase change particles in a semi-annular cavity. Journal of Energy Storage, 2020, 32, 101834.	3.9	15
435	Thermal analysis in buoyancy driven flow of hybrid nanofluid subject to thermal radiation. International Journal of Ambient Energy, 2022, 43, 3868-3876.	1.4	15
436	Hybridized nanofluid with stagnation point past a rotating disk. Physica Scripta, 2021, 96, 025214.	1.2	15
437	DOUBLE-DIFFUSIVE NATURAL CONVECTIVE PERISTALTIC PRANDTL FLOW IN A POROUS CHANNEL SATURATED WITH A NANOFLUID. Heat Transfer Research, 2017, 48, 283-290.	0.9	15
438	Partial Slip Effects on a Rotating Flow of Two Phase Nano Fluid Over a Stretching Surface. Current Nanoscience, 2014, 10, 846-854.	0.7	15
439	Analysis of entropy generation in the nonlinear thermal radiative micropolar nanofluid flow towards a stagnation point with catalytic effects. Physica Scripta, 2022, 97, 085204.	1.2	15
440	Magnetohydrodynamic Rotating Flow of a Second Grade Fluid with a Given Volume Flow Rate Variation. Meccanica, 2004, 39, 483-488.	1.2	14
441	Flow of a Third Grade Fluid between Coaxial Cylinders with Variable Viscosity. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 588-596.	0.7	14
442	Solvent-free synthesis of benzothiazole-based quaternary ammonium salts: precursors to ionic liquids. Arkivoc, 2010, 2010, 19-37.	0.3	14
443	Peristaltic Flow of a Maxwell Model Through Porous Boundaries in a Porous Medium. Transport in Porous Media, 2011, 86, 895-909.	1.2	14
444	Combined effects of heat and chemical reactions on the peristaltic flow of carreau fluid model in a diverging tube. International Journal for Numerical Methods in Fluids, 2011, 67, 1818-1832.	0.9	14
445	An analytical and numerical study of peristaltic transport of a Johnson—Segalman fluid in an endoscope. Chinese Physics B, 2013, 22, 014703.	0.7	14
446	THREE-DIMENSIONAL PERISTALTIC FLOW OF A WILLIAMSON FLUID IN A RECTANGULAR CHANNEL HAVING COMPLIANT WALLS. Journal of Mechanics in Medicine and Biology, 2014, 14, 1450002.	0.3	14
447	Mathematical model for the peristaltic flow of nanofluid through eccentric tubes comprising porous medium. Applied Nanoscience (Switzerland), 2014, 4, 733-743.	1.6	14
448	Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface. Chinese Physics B, 2015, 24, 014702.	0.7	14
449	CNT suspended CuO+H2O nano fluid and energy analysis for the peristaltic flow in a permeable channel. AEJ - Alexandria Engineering Journal, 2015, 54, 623-633.	3.4	14
450	Ciliary motion phenomenon of viscous nanofluid in a curved channel with wall properties. European Physical Journal Plus, 2016, 131, 1.	1.2	14

#	Article	IF	CITATIONS
451	Metachronal wave analysis for non-Newtonian fluid under thermophoresis and Brownian motion effects. Results in Physics, 2017, 7, 2950-2957.	2.0	14
452	Endoscopic Analysis of Wave Propagation with Ag-nanoparticles in Curved Tube Having Permeable Walls. Current Nanoscience, 2018, 14, 384-402.	0.7	14
453	Thermophoresis and Brownian Model of Pseudo-Plastic Nanofluid Flow over a Vertical Slender Cylinder. Mathematical Problems in Engineering, 2020, 2020, 1-10.	0.6	14
454	Mathematical Analysis of Thermal Energy Distribution in a Hybridized Mixed Convective Flow. Journal of Nanofluids, 2021, 10, 222-231.	1.4	14
455	Heat and mass transfer analysis in the MHD flow of radiative Maxwell nanofluid with non-uniform heat source/sink. Waves in Random and Complex Media, 0, , 1-24.	1.6	14
456	Theoretical analysis of Brownian and thermophoresis motion effects for Newtonian fluid flow over nonlinear stretching cylinder. Case Studies in Thermal Engineering, 2021, 28, 101369.	2.8	14
457	Influence of Magnetic Field and Slip on Jeffrey Fluid in a Ciliated Symmetric Channel with Metachronal Wave Pattern. Journal of Applied Fluid Mechanics, 2016, 9, 565-572.	0.4	14
458	Analysis of Nanoparticles on Peristaltic Flow of Prandtl Fluid Model in an Endoscopy. Current Nanoscience, 2014, 10, 709-721.	0.7	14
459	Thermal Radiation Effects on the Flow by an Exponentially Stretching Surface: a Series Solution. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 495-503.	0.7	13
460	Simulation of heat transfer on the peristaltic flow of a Jeffrey-six constant fluid in a diverging tube. International Communications in Heat and Mass Transfer, 2011, 38, 154-159.	2.9	13
461	Analytical and Numerical Analysis of Vogel's Model of Viscosity on the Peristaltic Flow of Jeffrey Fluid. Journal of Aerospace Engineering, 2012, 25, 64-70.	0.8	13
462	Williamson Fluid Model for the Peristaltic Flow of Chyme in Small Intestine. Mathematical Problems in Engineering, 2012, 2012, 1-18.	0.6	13
463	Heat and Mass Transfer Analysis of Peristaltic Flow of Nanofluid in a Vertical Rectangular Duct by Using the Optimized Series Solution and Genetic Algorithm. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1133-1149.	0.4	13
464	Peristaltic Flow of a Sutterby Nanofluid with Double-Diffusive Natural Convection. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1546-1552.	0.4	13
465	A New Thermal Conductivity Model With Shaped Factor Ferromagnetism Nanoparticles Study for the Blood Flow in Non-Tapered Stenosed Arteries. IEEE Transactions on Nanobioscience, 2015, 14, 780-789.	2.2	13
466	DFT study of structural, electronic, thermo-elastic properties and plausible origin of superconductivity due to quantum degenerate states in LaTiO3. Journal of Theoretical and Computational Chemistry, 2016, 15, 1650044.	1.8	13
467	A comparative study of Cu nanoparticles under slip effects through oblique eccentric tubes, a biomedical solicitation examination. Canadian Journal of Physics, 2019, 97, 63-81.	0.4	13
468	Impact of an oblique stagnation point on MHD micropolar nanomaterial in porous medium over an oscillatory surface with partial slip. Physica Scripta, 2019, 94, 065209.	1.2	13

#	Article	IF	CITATIONS
469	Physiological flow of biomedical compressible fluids inside a ciliated symmetric channel. Advances in Mechanical Engineering, 2020, 12, 168781402093847.	0.8	13
470	Bio-mathematical analysis of electro-osmotically modulated hemodynamic blood flow inside a symmetric and nonsymmetric stenosed artery with joule heating. International Journal of Biomathematics, 2022, 15, .	1.5	13
471	A Computational Model for the Radiated Kinetic Molecular Postulate of Fluid-Originated Nanomaterial Liquid Flow in the Induced Magnetic Flux Regime. Mathematical Problems in Engineering, 2021, 2021, 1-17.	0.6	13
472	Mathematical analysis of heat and mass transfer in a Maxwell fluid. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 4967-4976.	1.1	13
473	Numerical Solutions of Peristaltic Flow of a Newtonian Fluid under the Effects of Magnetic Field and Heat Transfer in a Porous Concentric Tubes. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 369-380.	0.7	12
474	THE NUMERICAL AND ANALYTICAL SOLUTION OF PERISTALTIC FLOW OF A JEFFREY FLUID IN AN INCLINED TUBE WITH PARTIAL SLIP. Journal of Mechanics in Medicine and Biology, 2011, 11, 773-802.	0.3	12
475	Numerical treatment of Jeffrey fluid with pressureâ€dependent viscosity. International Journal for Numerical Methods in Fluids, 2012, 68, 196-209.	0.9	12
476	An Optimized Study of Mixed Convection Flow of a Rotating Jeffrey Nanofluid on a Rotating Vertical Cone. Journal of Computational and Theoretical Nanoscience, 2015, 12, 3028-3035.	0.4	12
477	Blood flow suspension in tapered stenosed arteries for Walter's B fluid model. Computer Methods and Programs in Biomedicine, 2016, 132, 45-55.	2.6	12
478	Biomechanically driven unsteady non-uniform flow of Copper water and Silver water nanofluids through finite length channel. Computer Methods and Programs in Biomedicine, 2017, 146, 1-9.	2.6	12
479	Ferromagnetic nano model study for the peristaltic flow in a plumb duct with permeable walls. Microsystem Technologies, 2019, 25, 1227-1234.	1.2	12
480	MHD oblique stagnation point flow of copper-water nanofluid with variable properties. Physica Scripta, 2019, 94, 125808.	1.2	12
481	Effect of the Variable Viscosity on the Peristaltic Flow of Newtonian Fluid Coated withMagnetic Field: Application of Adomian Decomposition Method for Endoscope. Coatings, 2019, 9, 524.	1.2	12
482	Analysis of Ag/blood-mediated transport in curved annulus with exclusive nature of convective boundary. Physica Scripta, 2019, 94, 115011.	1.2	12
483	Magneto-hydro dynamic squeezed flow of Williamson fluid transiting a sensor surface. Heliyon, 2020, 6, e04875.	1.4	12
484	Significance of Knudsen number and corrugation on EMHD flow under metallic nanoparticles impact. Physica A: Statistical Mechanics and Its Applications, 2020, 551, 124089.	1.2	12
485	Green synthesis of biodegradable terpolymer modified starch nanocomposite with carbon nanoparticles for food packaging application. Journal of Applied Polymer Science, 2021, 138, 50604.	1.3	12
486	Impact of uniform and non-uniform heated rods on free convective flow inside a porous enclosure: finite element analysis. Physica Scripta, 2021, 96, 085203.	1.2	12

#	Article	IF	CITATIONS
487	Significance of Coriolis force on the dynamics of water conveying copper and copper oxide nanoparticles. Physica Scripta, 2020, 95, 115706.	1.2	12
488	Similarity solution of second grade fluid flow over a moving cylinder. International Journal of Modern Physics B, 2021, 35, .	1.0	12
489	Entropy and stability analysis on blood flow with nanoparticles through a stenosed artery having permeable walls. Science Progress, 2022, 105, 003685042210960.	1.0	12
490	Effects of heat and chemical reactions on peristaltic flow of Newtonian fluid in a diverging tube with inclined MHD. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 659-668.	0.8	11
491	Effects of heat and mass transfer peristaltic flow ofÂWilliamson fluid in a vertical annulus. Meccanica, 2012, 47, 141-151.	1.2	11
492	Influence of heat and chemical reactions on the Sisko fluid model for blood flow through a tapered artery with a mild stenosis. Quaestiones Mathematicae, 2014, 37, 157-177.	0.2	11
493	Blood flow analysis in tapered stenosed arteries with pseudoplastic characteristics. International Journal of Biomathematics, 2014, 07, 1450065.	1.5	11
494	Theoretical Analysis for Peristaltic Flow of Carreau Nano Fluid in a Curved Channel with Compliant Walls. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1443-1452.	0.4	11
495	Series solution of unsteady peristaltic flow of a Carreau fluid in small intestines. International Journal of Biomathematics, 2014, 07, 1450049.	1.5	11
496	Study of Radially Varying Magnetic Field on Blood Flow through Catheterized Tapered Elastic Artery with Overlapping Stenosis. Communications in Theoretical Physics, 2015, 64, 537-546.	1.1	11
497	Effects of the wall properties on unsteady peristaltic flow of an Eyring–Powell fluid in a three-dimensional rectangular duct. International Journal of Biomathematics, 2015, 08, 1550081.	1.5	11
498	Endoscopy Analysis for the Peristaltic Flow of Nanofluids Containing Carbon Nanotubes with Heat Transfer. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 745-755.	0.7	11
499	Non-linear Radiation Effects in Mixed Convection Stagnation Point Flow along a Vertically Stretching Surface. International Journal of Chemical Reactor Engineering, 2017, 15, .	0.6	11
500	Heat and peristaltic propagation of water based nanoparticles with variable fluid features. Physica Scripta, 2019, 94, 125704.	1.2	11
501	Aspects of 3D rotating hybrid CNT flow for a convective exponentially stretched surface. Applied Nanoscience (Switzerland), 2020, 10, 2897-2906.	1.6	11
502	MHD stagnation point flow of a Maxwell nanofluid over a shrinking sheet (multiple solution). Heat Transfer, 2021, 50, 4729-4743.	1.7	11
503	Viscous flow between two sinusoidally deforming curved concentric tubes: advances in endoscopy. Scientific Reports, 2021, 11, 15124.	1.6	11
504	Features of thermophoretic and Brownian forces in Burgers fluid flow subject to Joule heating and convective conditions. Physica Scripta, 2021, 96, 015211.	1.2	11

#	Article	IF	CITATIONS
505	Mathematical model of convective heat transfer for peristaltic flow of Rabinowitsch fluid in a wavy rectangular duct with entropy generation. Physica Scripta, 2022, 97, 065205.	1.2	11
506	Mathematical computations for the physiological flow of Casson fluid in a vertical elliptic duct with ciliated heated wavy walls. Waves in Random and Complex Media, 0, , 1-14.	1.6	11
507	Flow of a Non-Newtonian Nanofluid Between Coaxial Cylinders with Variable Viscosity. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2012, 67, 255-261.	0.7	10
508	Simulation of heating scheme and chemical reactions on the peristaltic flow of an Eyringâ€Powell fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2012, 22, 764-776.	1.6	10
509	Biomathematical study of nonâ€Newtonian nanoï¬,uid in a diverging tube. Heat Transfer - Asian Research, 2013, 42, 389-402.	2.8	10
510	Copper nanoparticle analysis for peristaltic flow in a curved channel with heat transfer characteristics. European Physical Journal Plus, 2014, 129, 1.	1.2	10
511	Theoretical analysis of entropy generation in peristaltic transport of nanofluid in an asymmetric channel. International Journal of Exergy, 2016, 20, 294.	0.2	10
512	ANTI-BACTERIAL APPLICATIONS FOR NEW THERMAL CONDUCTIVITY MODEL IN ARTERIES WITH CNT SUSPENDED NANOFLUID. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650063.	0.3	10
513	Inquisition of combined effects of radiation and MHD on elastico-viscous fluid flow past a pervious plate. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	10
514	The effects of MHD and buoyancy on Hematite water-based fluid past a convectively heated stretching sheet. Neural Computing and Applications, 2019, 31, 1083-1090.	3.2	10
515	Permeability impact on electromagnetohydrodynamic flow through corrugated walls of microchannel with variable viscosity. Advances in Mechanical Engineering, 2020, 12, 168781402094433.	0.8	10
516	Scientific breakdown for physiological blood flow inside a tube with multi-thrombosis. Scientific Reports, 2021, 11, 6718.	1.6	10
517	Unsteady shear-thinning behaviour of nanofluid flow over exponential stretching/shrinking cylinder. Journal of Molecular Liquids, 2022, 345, 117894.	2.3	10
518	Heat Transport Improvement and Three-Dimensional Rotating Cone Flow of Hybrid-Based Nanofluid. Mathematical Problems in Engineering, 2021, 2021, 1-11.	0.6	10
519	Insightful Facts on Peristalsis Flow of Water Conveying Multi-Walled Carbon Nanoparticles Through Elliptical Ducts With Ciliated Walls. Frontiers in Physics, 0, 10, .	1.0	10
520	Analytical Treatment of an Oldroyd 8-constant Fluid Between Coaxial Cylinders with Variable Viscosity. Communications in Theoretical Physics, 2011, 56, 933-938.	1.1	9
521	Effects of heat and chemical reaction on Jeffrey fluid model with stenosis. Applicable Analysis, 2012, 91, 1631-1647.	0.6	9
522	The boundary layer flow and heat transfer of a nanofluid over a vertical, slender cylinder. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2012, 226, 165-173.	0.1	9

#	Article	IF	CITATIONS
523	MHD stagnation point flow towards heated shrinking surface subjected to heat generation/absorption. Applied Mathematics and Mechanics (English Edition), 2012, 33, 631-648.	1.9	9
524	Blood flow study of Williamson fluid through stenosed arteries with permeable walls. European Physical Journal Plus, 2014, 129, 1.	1.2	9
525	Biological Analysis of Jeffrey Nanofluid in a Curved Channel With Heat Dissipation. IEEE Transactions on Nanobioscience, 2014, 13, 431-437.	2.2	9
526	Mathematical study for peristaltic flow of Williamson fluid in a curved channel. International Journal of Biomathematics, 2015, 08, 1550005.	1.5	9
527	Crystal structure and biological properties of a tetranuclear zinc(II) complex of cysteamine, [Zn4Cym4Cl4] prepared in the presence of diamines. Russian Journal of Inorganic Chemistry, 2015, 60, 1568-1572.	0.3	9
528	Entropy generation analysis for metachronal beating of ciliated Cu-water nanofluid with magnetic field. International Journal of Exergy, 2016, 19, 41.	0.2	9
529	Biomechanically driven flow of a magnetohydrodynamic bio-fluid in a micro-vessel with slip and convective boundary conditions. Microsystem Technologies, 2019, 25, 151-173.	1.2	9
530	Mathematical model for blood flow through the stenosed channel. Physica Scripta, 2020, 95, 025206.	1.2	9
531	Finite element analysis of convective nanofluid equipped in enclosure having both inlet and outlet zones. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 428-441.	2.7	9
532	Physiological Flow of Non-Newtonian Fluid with Variable Density Inside a Ciliated Symmetric Channel Having Compliant Wall. Arabian Journal for Science and Engineering, 2021, 46, 801-812.	1.7	9
533	Combined Effects of Binary Chemical Reaction/Activation Energy on the Flow of Sisko Fluid over a Curved Surface. Crystals, 2021, 11, 967.	1.0	9
534	Influence of Lateral Walls on Peristaltic Flow of a Couple Stress Fluid in a Non-Uniform Rectangular Duct. Applied Mathematics and Information Sciences, 2014, 8, 1127-1133.	0.7	9
535	Numerical simulation for mixed convection in a parallelogram enclosure: Magnetohydrodynamic (MHD) and moving wall-undulation effects. International Communications in Heat and Mass Transfer, 2022, 135, 106066.	2.9	9
536	Thin Film Flow of a Third Grade Fluid with Variable Viscosity. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 553-558.	0.7	8
537	ANALYTICAL AND NUMERICAL SOLUTIONS OF PERISTALTIC FLOW OF WILLIAMSON FLUID MODEL IN AN ENDOSCOPE. Journal of Mechanics in Medicine and Biology, 2011, 11, 941-957.	0.3	8
538	Axisymmetric stagnation flow of a nanofluid in a moving cylinder. Computational Mathematics and Modeling, 2013, 24, 293-306.	0.2	8
539	Biomechanical Analysis of Eyring Prandtl Fluid Model for Blood Flow in Stenosed Arteries. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14, 345-353.	0.4	8
540	Peristaltic transport of a Maxwell fluid in a porous asymmetric channel through a porous medium. Cogent Engineering, 2014, 1, 980770.	1.1	8

#	Article	IF	CITATIONS
541	Squeezed flow and heat transfer in a second grade fluid over a sensor surface. Thermal Science, 2014, 18, 357-364.	0.5	8
542	Nanoparticles Fraction on the Peristaltic Flow of Third Order Fluid. Journal of Computational and Theoretical Nanoscience, 2014, 11, 47-52.	0.4	8
543	Peristaltic Flow of Sutterby Nano Fluid in a Curved Channel with Compliant Walls. Journal of Computational and Theoretical Nanoscience, 2015, 12, 226-233.	0.4	8
544	Effects of partial slip on the peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel. Computational Mathematics and Mathematical Physics, 2015, 55, 1899-1912.	0.2	8
545	Rheological Analysis of CNT Suspended Nanofluid with Variable Viscosity: Numerical Solution. Communications in Theoretical Physics, 2017, 67, 681.	1.1	8
546	Magnetically driven flow of pseudoplastic fluid across a sensor surface. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	8
547	Stability analysis of Cu–H ₂ O nanofluid over a curved stretching–shrinking sheet: existence of dual solutions. Canadian Journal of Physics, 2019, 97, 911-922.	0.4	8
548	EMHD flow through microchannels with corrugated walls in the presence of nanofluid. Canadian Journal of Physics, 2019, 97, 701-720.	0.4	8
549	Physiological analysis of streamline topologies and their bifurcations for a peristaltic flow of nano fluid. Microsystem Technologies, 2019, 25, 1267-1296.	1.2	8
550	INFLUENCE OF HEAT AND CHEMICAL REACTIONS ON HYPERBOLIC TANGENT FLUID MODEL FOR BLOOD FLOW THROUGH A TAPERED ARTERY WITH A STENOSIS. Heat Transfer Research, 2012, 43, 69-94.	0.9	8
551	Hall Effects on Unsteady Motions of a Generalized Second-Grade Fluid through a Porous Medium. Journal of Porous Media, 2006, 9, 779-788.	1.0	8
552	Simulation of linear and nonlinear advection-diffusion problems by the direct radial basis function collocation method. International Communications in Heat and Mass Transfer, 2022, 130, 105775.	2.9	8
553	Insight into the significance of Richardson number on two-phase flow of ethylene glycol-silver nanofluid due to Cattaneo-Christov heat flux. Waves in Random and Complex Media, 0, , 1-19.	1.6	8
554	Effective Similarity Variables for the Computations of MHD Flow of Williamson Nanofluid over a Non-Linear Stretching Surface. Processes, 2022, 10, 1119.	1.3	8
555	The influence of Hall current in a circular duct. Nonlinear Analysis: Real World Applications, 2010, 11, 184-189.	0.9	7
556	Peristaltic Flow of Hyperbolic Tangent Fluid in a Diverging Tube with Heat and Mass Transfer. Journal of Energy Engineering - ASCE, 2013, 139, 124-135.	1.0	7
557	MECHANICS OF BIOLOGICAL BLOOD FLOW ANALYSIS THROUGH CURVED ARTERY WITH STENOSIS. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650024.	0.3	7
558	Advanced Study of Unsteady Heat and Chemical Reaction with Ramped Wall and Slip Effect on a Viscous Fluid. Communications in Theoretical Physics, 2017, 67, 301.	1.1	7

#	Article	IF	CITATIONS
559	Numerical investigation of viscoelastic nanofluid flow with radiation effects. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2019, 233, 87-96.	0.5	7
560	Flow of a micropolar CNT-based nanofluid across a squeezing channel. Physica Scripta, 2019, 94, 105203.	1.2	7
561	Heat transfer and Helmholtz-Smoluchowski velocity in Bingham fluid flow. Applied Mathematics and Mechanics (English Edition), 2020, 41, 1167-1178.	1.9	7
562	Investigation of a hyperbolic annular fin with temperature dependent thermal conductivity by two step third derivative block method (TSTDBM). Microsystem Technologies, 2021, 27, 2063-2074.	1.2	7
563	MHD effect on nanofluid with energy and hydrothermal behavior between two collateral plates: Application of new semi analytical technique. Thermal Science, 2017, 21, 2081-2093.	0.5	7
564	Exact and numerical solutions of a micropolar fluid in a vertical annulus. Numerical Methods for Partial Differential Equations, 2010, 26, 1660-1674.	2.0	6
565	Numerical Analysis of Peristaltic Transport of a Tangent Hyperbolic Fluid in an Endoscope. Journal of Aerospace Engineering, 2011, 24, 309-317.	0.8	6
566	Endoscopic and heat transfer effects on the peristaltic flow of a thirdâ€order fluid with chemical reactions. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 45-54.	0.8	6
567	Series solution of magneto-hydrodynamic boundary layer flow over bi-directional exponentially stretching surfaces. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 443-453.	0.8	6
568	Natural Propulsion with Lorentz Force and Nanoparticles in a Bioinspired Lopsided Ciliated Channel. Journal of Bionic Engineering, 2017, 14, 172-181.	2.7	6
569	Heat transfer enhancement and migration of ferrofluid due to electric force inside a porous medium with complex geometry. Physica Scripta, 2019, 94, 115218.	1.2	6
570	Slip Effects on Unsteady Oblique Stagnation Point Flow of Nanofluid in a View of Inclined Magnetic Field. Mathematical Problems in Engineering, 2020, 2020, 1-12.	0.6	6
571	SIMULATION OF THE SECOND-GRADE FLUID MODEL AND HEATING SCHEME OF THE BLOOD FLOW THROUGH A TAPERED ARTERY WITH MASS TRANSFER. Heat Transfer Research, 2014, 45, 391-408.	0.9	6
572	Numerical and Analytical Treatments of Peristaltic Transport of a Six Constant Jeffreys Model of Fluid in a Symmetric or Asymmetric Channel. International Journal of Fluid Mechanics Research, 2012, 39, 238-260.	0.4	6
573	INFLUENCE OF HEAT TRANSFER AND VARIABLE VISCOSITY IN VERTICAL POROUS ANNULUS WITH PERISTALSIS. Journal of Porous Media, 2011, 14, 849-863.	1.0	6
574	Simulation of Heat and Chemical Reactions on the Peristaltic Flow of a Johnson Segalman Fluid in an Endoscope. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11, .	0.4	5
575	Thiazolium and Benzothiazolium Ionic Liquids. , 2011, , .		5
576	Numerical and series solutions of the peristaltic motion of an Oldroyd 8-constant fluid in an endoscope. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 987-993.	0.9	5

#	Article	IF	CITATIONS
577	Endoscopic Effects on the Peristaltic Flow of a Jeffrey Six-Constant Fluid Model with Variable Viscosity. Journal of Aerospace Engineering, 2013, 26, 535-543.	0.8	5
578	Influence of mixed convection on blood flow of Jeffrey fluid through a tapered stenosed artery. Thermal Science, 2013, 17, 533-546.	0.5	5
579	Peristaltic Flow of a Prandtl Nano Fluid in an Asymmetric Porous Channel: Numerical Solutions. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1342-1348.	0.4	5
580	Metachronal wave analysis for non-Newtonian fluid inside a symmetrical channel with ciliated walls. Results in Physics, 2017, 7, 1536-1549.	2.0	5
581	Probe of Radiant Flow on Temperature-Dependent Viscosity Models of Differential Type MHD Fluid. Mathematical Problems in Engineering, 2020, 2020, 1-16.	0.6	5
582	Theoretical Analysis of Shear Thinning Hyperbolic Tangent Fluid Model for Blood Flow in Curved Artery with Stenosis. Journal of Applied Fluid Mechanics, 2016, 9, 2217-2227.	0.4	5
583	(4Z)-4-[(2E)-1-Hydroxy-3-(4-methoxyphenyl)prop-2-enylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3046-o3046.	0.2	4
584	HEAT TRANSFER ANALYSIS FOR THE PERISTALTIC FLOW OF CHYME IN SMALL INTESTINE: A THEORETICAL STUDY. Journal of Mechanics in Medicine and Biology, 2012, 12, 1250035.	0.3	4
585	Effects of Induced Magnetic Field on the Peristaltic Flow of an Eyring-Powell Fluid. Journal of Aerospace Engineering, 2013, 26, 835-841.	0.8	4
586	Unsteady Mixed Convection Flow of a Rotating Second-Grade Fluid on a Rotating Cone. Heat Transfer - Asian Research, 2014, 43, 204-220.	2.8	4
587	Double-Diffusive Natural Convective Peristaltic Flow of a Nanofluid in an Asymmetric Porous Channel. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1553-1559.	0.4	4
588	Natural Convective Flow Analysis For Nanofluids With Reynold [,] s Model of Viscosity. International Journal of Chemical Reactor Engineering, 2016, 14, 1101-1111.	0.6	4
589	Influence of thermal and velocity slip on the peristaltic flow of Cu–water nanofluid with magnetic field. Applied Nanoscience (Switzerland), 2016, 6, 417-423.	1.6	4
590	Dual nature solutions for temperatureâ€dependent transport properties of nanofluid flow with entropy generation. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	4
591	Impact of gravity-induced and Fourier's heat flux on the nano-film flow over thermal sensitive surface. Applied Nanoscience (Switzerland), 2020, 10, 5253-5263.	1.6	4
592	Simulations of micropolar nanofluid-equipped natural convective-driven flow in a cavity. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 2640-2659.	1.6	4
593	Electroosmotically driven flow of micropolar bingham viscoplastic fluid in a wavy microchannel: application of computational biology stomach anatomy. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 289-298.	0.9	4
594	THIN FILM FLOW OF A NON-NEWTONIAN FLUID DOWN A VERTICAL CYLINDER THROUGH A POROUS MEDIUM. Journal of Porous Media, 2010, 13, 973-980.	1.0	4

#	Article	IF	CITATIONS
595	Thermal slip and homogeneous/heterogeneous reaction characteristics of second-grade fluid flow over an exponentially stretching sheet. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892110641.	1.4	4
596	Exponentially Stagnation Point Flow of Non-Newtonian Nanofluid over an Exponentially Stretching Surface. International Journal of Nonlinear Sciences and Numerical Simulation, 2014, 15, .	0.4	3
597	Hypothetical analysis for peristaltic transport of metallic nanoparticles in an inclined annulus with variable viscosity. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2016, 64, 447-454.	0.8	3
598	BIOPHYSICAL HEAT TRANSFER STUDY FOR THE CONTRACTION AND EXPANSION OF MUSCLES WITH MULTI-WALL CARBON NANOTUBES. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750014.	0.3	3
599	Theoretical aspects of micropolar nanofluid flow past a deformable rotating cone. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	3
600	Numerical Simulation of Nanoparticle Fraction for the Peristaltic Flow of a Six Constant Jeffrey's Fluid Model. Current Nanoscience, 2013, 9, 798-803.	0.7	3
601	Bifurcation Analysis for Physiological Flow of a Nanofluid: Application of Biomechanics. Current Nanoscience, 2018, 14, 481-502.	0.7	3
602	Blood Flow Through a Catheterized Artery Having a Mild Stenosis at the Wall with a Blood Clot at the Centre. CMES - Computer Modeling in Engineering and Sciences, 2020, 125, 565-577.	0.8	3
603	6-Benzylsulfanyl-9H-purine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2994-o2994.	0.2	2
604	2-Bromo-4-methylbenzonitrile. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3166.	0.2	2
605	Influence of Heat Transfer and Magnetic Field on a Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel with Partial Slip. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 483-494.	0.7	2
606	Application of radially varying magnetic field on a peristaltic flow of nonâ€Newtonian fluid in the presence of heat and mass transfer. Heat Transfer - Asian Research, 2010, 39, 555-574.	2.8	2
607	Influence of heat transfer on the nonorthogonal stagnation point flow of a thirdâ€order fluid towards a stretching surface. Heat Transfer - Asian Research, 2013, 42, 319-334.	2.8	2
608	Modification of Diamond Particles for Improved Dispersion in Liquid Phase. Asian Journal of Chemistry, 2013, 25, 9840-9844.	0.1	2
609	Theoretical Analysis for Peristaltic Flow of Sisko Nano Fluid in a Curved Channel with Compliant Walls. Journal of Computational and Theoretical Nanoscience, 2015, 12, 630-636.	0.4	2
610	Mathematical analysis of Phan-Thien–Tanner fluid model for blood in arteries. International Journal of Biomathematics, 2015, 08, 1550064.	1.5	2
611	Nanoparticle effect over the boundary layer flow over an exponentially stretching cylinder. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2015, 229, 17-22.	0.1	2
612	Physiological Flow of Jeffrey Six Constant Fluid Model due to Ciliary Motion. Communications in Theoretical Physics, 2016, 66, 701-708.	1.1	2

#	Article	IF	CITATIONS
613	Impact of Linear Operator on the Convergence of HAM Solution: a Modified Operator Approach. Advances in Applied Mathematics and Mechanics, 2016, 8, 499-516.	0.7	2
614	Permeability conditions for the physiological viscous nanofluid: endoscopic analysis for uniform and non-uniform tubes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 3413-3423.	0.8	2
615	An optimal solution of Cattaneo–Christov heat flux model and chemical processes for 3D flow of Eyring–Powell fluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	2
616	Consequences of compliant walls for peristaltic transportation in a channel having porous medium and porous boundaries. Canadian Journal of Physics, 2019, 97, 599-608.	0.4	2
617	Corrigendum to "Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga curface surface―[Comput Meth Prog Bio 185 (2020) 105,136]. Computer Methods and Programs in Biomedicine, 2020, 187, 105251.	2.6	2
618	Mixed convective 3D flow of Maxwell nanofluid induced by stretching sheet: Application of Cattaneo-Christov theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, , 095440622097324.	1.1	2
619	Analytical solution of free convection heat transfer of hybrid nanofluids over a vertical flat plate embedded in a porous medium. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	2
620	Three dimensional MHD Casson fluid flow over a stretching surface with variable thermal conductivity. Journal of Applied Mathematics and Computational Mechanics, 2021, 20, 25-36.	0.3	2
621	Ciliary Flow of Casson Nanofluid with the Influence of MHD having Carbon Nanotubes. Current Nanoscience, 2021, 17, 447-462.	0.7	2
622	Microphysical analysis for peristaltic flow of SWCNT and MWCNT carbon nanotubes inside a catheterised artery having thrombus: irreversibility effects with entropy. International Journal of Exergy, 2021, 34, 301.	0.2	2
623	Unsteady MHD Boundary Layer Flow of a Couple Stress Nano Fluid Over a Stretching/Shrinking Surface with Convective Boundary Condition. Journal of Computational and Theoretical Nanoscience, 2015, 12, 4408-4414.	0.4	2
624	SERIES SOLUTIONS FOR THE STAGNATION FLOW OF A MAXWELL FLUID OVER A SHRINKING SHEET. Composites: Mechanics, Computations, Applications, 2011, 2, 297-311.	0.2	2
625	NANOPARTICLE FRACTION IN AN ANNULUS IN THE JEFFREY FLUID MODEL. Heat Transfer Research, 2016, 47, 707-720.	0.9	2
626	Convective heat transfer of a Sutterby fluid in an inclined asymmetric channel with partial slip. Heat Transfer Research, 2013, , .	0.9	2
627	The Effects of Thermocapillarity on the Thin Film Flow of MHD UCM Fluid over an Unsteady Elastic Surface with Convective Boundary Conditions. International Journal of Thermofluid Science and Technology, 2019, 6, .	0.3	2
628	Physical Survey of Thermally Heated Non-Newtonian Jeffrey Fluid in a Ciliated Conduit Having Heated Compressing and Expanding Walls. Applied Sciences (Switzerland), 2022, 12, 5065.	1.3	2
629	4-[(2,5-Dimethylanilino)acetyl]-3,4-dihydroquinoxalin-2(1H)-one. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3006-o3006.	0.2	1
630	Effects of Variable Viscosity on the Peristaltic Motion in a Third-Order Fluid. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 901-918.	0.7	1

#	Article	IF	CITATIONS
631	PERISTALTIC FLOW OF REINER-RIVLIN FLUID IN AN ENDOSCOPE. Composites: Mechanics, Computations, Applications, 2012, 3, 63-77.	0.2	1
632	Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall. AIP Advances, 2015, 5, 127143.	0.6	1
633	Biomechanical Analysis of Copper Nanoparticles on Blood Flow Through Curved Artery with Stenosis. Journal of Computational and Theoretical Nanoscience, 2015, 12, 2322-2331.	0.4	1
634	Zinc halide complexes of thionicotinamide; crystal structure of dichlorido bis(thionicotinamide-κN)zinc(II). Journal of Structural Chemistry, 2017, 58, 178-182.	0.3	1
635	Analysis of non-newtonian fluid with phase flow model. Scientia Iranica, 2021, .	0.3	1
636	Impact of magnetic dipole on a thermally stratified ferrofluid past a stretchable surface. , 0, .		1
637	THREE-DIMENSIONAL BOUNDARY-LAYER FLOW OVER AN EXPONENTIALLY STRETCHING SURFACE WITH THERMAL RADIATION. Heat Transfer Research, 2015, 46, 503-514.	0.9	1
638	Analytical view of magnetic hydrodynamics rotating flow of Barium Ferrite nanofluid with viscous dissipation. Scientia Iranica, 2020, .	0.3	1
639	4-[2-(Benzylsulfanyl)acetyl]-3,4-dihydroquinoxalin-2(1H)-one. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o848-o848.	0.2	0
640	Peristaltic flow of a Jeffreyâ€six constant fluid in a uniform inclined tube. International Journal for Numerical Methods in Fluids, 2012, 69, 1550-1565.	0.9	0
641	Surface Reforming of Diamond Particles by the Dispersion Enhancement in Common Liquids. Arabian Journal for Science and Engineering, 2016, 41, 97-103.	1.1	0
642	SERIES SOLUTIONS FOR UNSTEADY STAGNATION POINT FLOWS OF A NON-NEWTONIAN FLUID OVER A SHRINKING SHEET. Composites: Mechanics, Computations, Applications, 2013, 4, 303-318.	0.2	0
643	Mathematical Model for Blood Flow Through Tapered Arteries with Temperature Dependent Viscosity. Journal of Advanced Mathematics and Applications, 2014, 3, 122-129.	0.5	0
644	Construction of a Binary S-Scheme Co@ZF/S@GCN Heterojunction With Enhanced Spatial Charge Separation for Sunlight-Driven Photocatalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
645	Novel Numerical Method Based on the Analog Equation Method for a Class of Anisotropic Convection-Diffusion Problems. Frontiers in Physics, 2022, 10, .	1.0	Ο