Wei-Jie Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/289837/publications.pdf

Version: 2024-02-01

71	5,489	36	73
papers	citations	h-index	g-index
75	75	75	6050 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Architecting a 3D continuous C/CuVO ₃ @Cu composite anode for lithium-ion storage. Surface Innovations, 2023, 11, 70-78.	1.4	5
2	Simply Coupling TiO ₂ Nanospheres with Cu ₂ O Particles to Boost the Photocatalytic Hydrogen Evolution through p–n Heterojunctionâ€Induced Charge Transfer. Energy Technology, 2022, 10, 2100259.	1.8	4
3	Boron leaching: Creating vacancy-rich Ni for enhanced hydrogen evolution. Nano Research, 2022, 15, 1868-1873.	5.8	18
4	Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (MÂ=ÂW, Mo) co-catalysts. Journal of Materials Science and Technology, 2022, 101, 242-263.	5.6	14
5	A novel superimposed porous copper/carbon film derived from polymer matrix as catalyst support for metal-air battery. Journal of Porous Materials, 2022, 29, 249-255.	1.3	8
6	Confining Zeroâ€Valent Platinum Single Atoms in αâ€MoC _{1â^³} <i>_×</i> pHâ€Universal Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, 2108464.	7.8	43
7	2D boron nanosheet architectonics: opening new territories by smart functionalization. Journal of Materials Chemistry A, 2022, 10, 2736-2750.	5.2	12
8	Recent progress on three-dimensional nanoarchitecture anode materials for lithium/sodium storage. Journal of Materials Science and Technology, 2022, 119, 167-181.	5.6	26
9	Architecting Braided Porous Carbon Fibers Based on Highâ€Density Catalytic Crystal Planes to Achieve Highly Reversible Sodiumâ€Ion Storage. Advanced Science, 2022, 9, e2104780.	5.6	13
10	Integrated p-n/Schottky junctions for efficient photocatalytic hydrogen evolution upon Cu@TiO2-Cu2O ternary hybrids with steering charge transfer. Journal of Colloid and Interface Science, 2022, 622, 924-937.	5.0	31
11	Co-embedding oxygen vacancy and copper particles into titanium-based oxides (TiO2, BaTiO3, and) Tj ETQq1 1 0. of Colloid and Interface Science, 2022, 624, 348-361.	.784314 rg 5.0	
12	Organic Small Molecules with Electrochemicalâ€Active Phenolic Enolate Groups for Readyâ€toâ€Charge Organic Sodiumâ€lon Batteries. Small Methods, 2022, 6, .	4.6	15
13	Synergistic Double Cross-Linked Dynamic Network of Epoxidized Natural Rubber/Glycinamide Modified Polyacrylic Acid for Silicon Anode in Lithium Ion Battery: High Peel Strength and Super Cycle Stability. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33315-33327.	4.0	13
14	Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries. Journal of Materials Science and Technology, 2021, 68, 140-146.	5.6	20
15	Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?. Energy and Environmental Science, 2021, 14, 158-179.	15.6	224
16	Nanosized Si space-confined in 3D porous Cu as anode for high-performance lithium storage. Surface Innovations, 2021, 9, 207-213.	1.4	9
17	Engineered tungsten oxide-based photocatalysts for CO ₂ reduction: categories and roles. Journal of Materials Chemistry A, 2021, 9, 22781-22809.	5.2	29
18	Tuning dual three-dimensional porous copper/graphite composite to achieve diversified utilization of copper current collector for lithium storage. Rare Metals, 2021, 40, 2802-2809.	3.6	18

#	Article	IF	Citations
19	Facile Synthesis of Birnessite Î'-MnO ₂ and Carbon Nanotube Composites as Effective Catalysts for Li-CO ₂ Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16585-16593.	4.0	29
20	A P3-Type K _{1/2} Mn _{5/6} Mg _{1/12} Ni _{1/12} O ₂ Cathode Material for Potassium-Ion Batteries with High Structural Reversibility Secured by the Mg–Ni Pinning Effect. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28369-28377.	4.0	29
21	Recent Progress on Two-Dimensional Carbon Materials for Emerging Post-Lithium (Na+, K+, Zn2+) Hybrid Supercapacitors. Polymers, 2021, 13, 2137.	2.0	19
22	Strategies for boosting carbon electrocatalysts for the oxygen reduction reaction in non-aqueous metal–air battery systems. Journal of Materials Chemistry A, 2021, 9, 6671-6693.	5.2	37
23	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Science Advances, 2021, 7, eabl3742.	4.7	145
24	Improving the Energy Density and Efficiency of the Linear Polymer PMMA with a Double-Bond Fluoropolymer at Elevated Temperatures. ACS Omega, 2021, 6, 35014-35022.	1.6	6
25	Stress Distortion Restraint to Boost the Sodium Ion Storage Performance of a Novel Binary Hexacyanoferrate. Advanced Energy Materials, 2020, 10, 1903006.	10.2	67
26	Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy, 2020, 77, 105123.	8.2	51
27	Electron Delocalization and Dissolutionâ€Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2001852.	10.2	125
28	High-yielding carbon nanofibers grown on NIPS-derived porous nickel as a flexible electrode for supercapacitors. Materials Chemistry Frontiers, 2020, 4, 2976-2981.	3.2	13
29	Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy, 2020, 74, 104880.	8.2	225
30	Engineered zinc oxide nanoaggregates for photocatalytic removal of ciprofloxacin with structure dependence. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	13
31	A 1D/2D WO ₃ nanostructure coupled with a nanoparticulate CuO cocatalyst for enhancing solar-driven CO ₂ photoreduction: the impact of the crystal facet. Sustainable Energy and Fuels, 2020, 4, 2593-2603.	2.5	29
32	Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nature Communications, 2020, 11, 980.	5.8	283
33	Three-Dimensional Electronic Network Assisted by TiN Conductive Pillars and Chemical Adsorption to Boost the Electrochemical Performance of Red Phosphorus. ACS Nano, 2020, 14, 4609-4617.	7.3	31
34	Cuprous ion (Cu+) doping induced surface/interface engineering for enhancing the CO2 photoreduction capability of W18O49 nanowires. Journal of Colloid and Interface Science, 2020, 572, 306-317.	5.0	50
35	Beta-Cyclodextrin-triggered fabrication of broccoli-like ZnO nanoaggregates with enhanced photocatalytic capability. Functional Materials Letters, 2020, 13, 2051004.	0.7	1
36	Functional composite polymer electrolytes with imidazole modified SiO2 nanoparticles for high-voltage cathode lithium ion batteries. Electrochimica Acta, 2019, 320, 134567.	2.6	36

#	Article	IF	CITATIONS
37	Catalytic Activity Boosting of Nickel Sulfide toward Oxygen Evolution Reaction via Confined Overdoping Engineering. ACS Applied Energy Materials, 2019, 2, 5363-5372.	2.5	48
38	Recent Advances in Cuâ€Based Cocatalysts toward Solarâ€toâ€Hydrogen Evolution: Categories and Roles. Solar Rrl, 2019, 3, 1900256.	3.1	41
39	Phosphorusâ€Modulationâ€Triggered Surface Disorder in Titanium Dioxide Nanocrystals Enables Exceptional Sodiumâ€Storage Performance. Angewandte Chemie, 2019, 131, 4062-4066.	1.6	11
40	Phosphorusâ€Modulationâ€Triggered Surface Disorder in Titanium Dioxide Nanocrystals Enables Exceptional Sodiumâ€Storage Performance. Angewandte Chemie - International Edition, 2019, 58, 4022-4026.	7.2	56
41	Electrostatically assembled construction of ternary TiO2-Cu@C hybrid with enhanced solar-to-hydrogen evolution employing amorphous carbon dots as electronic mediator. Chemical Engineering Journal, 2019, 375, 121902.	6.6	38
42	Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812-1827.	6.4	79
43	Promoting solar-to-hydrogen evolution on Schottky interface with mesoporous TiO2-Cu hybrid nanostructures. Journal of Colloid and Interface Science, 2019, 545, 116-127.	5.0	58
44	Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Small, 2019, 15, e1900470.	5.2	226
45	Free-Standing Three-Dimensional CuCo ₂ S ₄ Nanosheet Array with High Catalytic Activity as an Efficient Oxygen Electrode for Lithium–Oxygen Batteries. ACS Applied Materials & Diterfaces, 2019, 11, 3834-3842.	4.0	75
46	Impact of Cu particles on adsorption and photocatalytic capability of mesoporous Cu@TiO2 hybrid towards ciprofloxacin antibiotic removal. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 229-242.	2.7	32
47	Remarkable Enhancement in Sodiumâ€ion Kinetics of NaFe ₂ (CN) ₆ by Chemical Bonding with Graphene. Small Methods, 2018, 2, 1700346.	4.6	40
48	Structural design of anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6183-6205.	5.2	127
49	First Observation of Low-Temperature Magnetic Transition in CuAgSe. Journal of Physical Chemistry C, 2018, 122, 19139-19145.	1.5	4
50	Achieving photocatalytic hydrogen production from alkaline solution upon a designed mesoporous TiO ₂ â€"Ni hybrid employing commonly used paper as a sacrificial electron donor. Inorganic Chemistry Frontiers, 2018, 5, 2709-2717.	3.0	27
51	A facile way to fabricate double-shell pomegranate-like porous carbon microspheres for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12073-12079.	5.2	30
52	Commercial Prospects of Existing Cathode Materials for Sodium Ion Storage. Advanced Energy Materials, 2017, 7, 1700274.	10.2	118
53	Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Research, 2017, 10, 4055-4081.	5.8	111
54	Graphiteâ€Nanoplateâ€Coated Bi ₂ S ₃ Composite with Highâ€Volume Energy Density and Excellent Cycle Life for Roomâ€Temperature Sodium–Sulfide Batteries. Chemistry - A European Journal, 2016, 22, 590-597.	1.7	48

#	Article	IF	Citations
55	Urchinâ€Like CoSe ₂ as a Highâ€Performance Anode Material for Sodiumâ€lon Batteries. Advanced Functional Materials, 2016, 26, 6728-6735.	7.8	471
56	Recent Developments of the Lithium Metal Anode for Rechargeable Nonâ€Aqueous Batteries. Advanced Energy Materials, 2016, 6, 1600811.	10.2	306
57	C ₁₀ H ₄ O ₂ S ₂ /graphene composite as a cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18409-18415.	5.2	35
58	MoS ₂ with an intercalation reaction as a long-life anode material for lithium ion batteries. Inorganic Chemistry Frontiers, 2016, 3, 532-535.	3.0	70
59	Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C). Journal of Materials Chemistry A, 2016, 4, 505-511.	5.2	106
60	Ambient synthesis of a multifunctional 1D/2D hierarchical Ag–Ag ₂ S nanowire/nanosheet heterostructure with diverse applications. CrystEngComm, 2016, 18, 930-937.	1.3	38
61	A new, cheap, and productive FeP anode material for sodium-ion batteries. Chemical Communications, 2015, 51, 3682-3685.	2.2	154
62	One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 4793-4798.	5.2	59
63	Oxidation behaviors of porous Haynes 214 alloy at high temperatures. Materials Characterization, 2015, 107, 283-292.	1.9	19
64	Cobalt phosphide as a new anode material for sodium storage. Journal of Power Sources, 2015, 294, 627-632.	4.0	158
65	Facile Method To Synthesize Na-Enriched Na $<$ sub $>$ 1+ $<$ i $>×<$ /i $><$ /sub $>$ FeFe(CN) $<$ sub $>$ 6 $<$ /sub $>$ Frameworks as Cathode with Superior Electrochemical Performance for Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 1997-2003.	3.2	163
66	Multifunctional conducing polymer coated Na1+MnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy, 2015, 13, 200-207.	8.2	165
67	Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery. RSC Advances, 2015, 5, 80536-80541.	1.7	52
68	Sn _{4+<i>x</i>} P ₃ @ Amorphous Snâ€P Composites as Anodes for Sodiumâ€Ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability. Advanced Materials, 2014, 26, 4037-4042.	11.1	298
69	Controlled synthesis of copper telluride nanostructures for long-cycling anodes in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 11683.	5.2	94
70	Oxidation behaviors of Ni-Cr-Al superalloy foams at 1 000 \hat{A}° C in air. Journal of Central South University, 2013, 20, 3345-3353.	1.2	7
71	Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage. Nano Letters, 2013, 13, 5480-5484.	4.5	390