Alaric J Dyckman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2897922/publications.pdf

Version: 2024-02-01

686830 642321 24 527 13 23 citations h-index g-index papers 26 26 26 717 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Identification of 2-Pyridinylindole-Based Dual Antagonists of Toll-like Receptors 7 and 8 (TLR7/8). ACS Medicinal Chemistry Letters, 2022, 13, 812-818.	1.3	5
2	Bicyclic Ligand-Biased Agonists of S1P ₁ : Exploring Side Chain Modifications to Modulate the PK, PD, and Safety Profiles. Journal of Medicinal Chemistry, 2021, 64, 1454-1480.	2.9	4
3	Discovery of Potent and Orally Bioavailable Small Molecule Antagonists of Toll-like Receptors 7/8/9 (TLR7/8/9). ACS Medicinal Chemistry Letters, 2020, 11, 1751-1758.	1.3	24
4	Aryl Ether-Derived Sphingosine-1-Phosphate Receptor (S1P1) Modulators: Optimization of the PK, PD, and Safety Profiles. ACS Medicinal Chemistry Letters, 2020, 11, 1766-1772.	1.3	5
5	Identification and Preclinical Pharmacology of ((1 <i>R</i> ,3 <i>S</i>)-1-Amino-3-((<i>S</i>)-6-(2-methoxyphenethyl)-5,6,7,8-tetrahydronaphthalen-2-yl)cycloper (BMS-986166): A Differentiated Sphingosine-1-phosphate Receptor 1 (S1P ₁) Modulator Advanced into Clinical Trials. Journal of Medicinal Chemistry, 2019, 62, 2265-2285.	nty <u>l</u>)metha	anol $_3$
6	Regioselective Epoxide Ring Opening for the Stereospecific Scale-Up Synthesis of BMS-960, A Potent and Selective Isoxazole-Containing \$1P<\sub>1 \sub Receptor Agonist. Organic Process Research and Development, 2017, 21, 200-207.	1.3	25
7	Identification of potent tricyclic prodrug S1P1 receptor modulators. MedChemComm, 2017, 8, 725-729.	3.5	6
8	Modulators of Sphingosine-1-phosphate Pathway Biology: Recent Advances of Sphingosine-1-phosphate Receptor 1 (S1P ₁) Agonists and Future Perspectives. Journal of Medicinal Chemistry, 2017, 60, 5267-5289.	2.9	48
9	An Efficient Scale-Up Synthesis of BMS-520, a Potent and Selective Isoxazole-Containing S1P ₁ Receptor Agonist. Organic Process Research and Development, 2016, 20, 989-995.	1.3	15
10	Identification of Tricyclic Agonists of Sphingosine-1-phosphate Receptor 1 (S1P ₁) Employing Ligand-Based Drug Design. Journal of Medicinal Chemistry, 2016, 59, 9837-9854.	2.9	8
11	Asymmetric Hydroboration Approach to the Scalable Synthesis of ((1 <i>R</i> ,3 <i>S</i>)-1-Amino-3-((<i>R</i>)-6-hexyl-5,6,7,8-tetrahydronaphthalen-2-yl)cyclopentyl)methanol (BMS-986104) as a Potent S1P ₁ Receptor Modulator. Journal of Medicinal Chemistry, 2016, 59 11138-11147	2.9	10
12	Discovery and Structure–Activity Relationship (SAR) of a Series of Ethanolamine-Based Direct-Acting Agonists of Sphingosine-1-phosphate (S1P ₁). Journal of Medicinal Chemistry, 2016, 59, 6248-6264.	2.9	22
13	Identification and Preclinical Pharmacology of BMS-986104: A Differentiated S1P ₁ Receptor Modulator in Clinical Trials. ACS Medicinal Chemistry Letters, 2016, 7, 283-288.	1.3	25
14	Potent and Selective Agonists of Sphingosine 1-Phosphate 1 (S1P ₁): Discovery and SAR of a Novel Isoxazole Based Series. Journal of Medicinal Chemistry, 2016, 59, 2820-2840.	2.9	20
15	Integrating High-Content Analysis into a Multiplexed Screening Approach to Identify and Characterize GPCR Agonists. Journal of Biomolecular Screening, 2014, 19, 1079-1089.	2.6	7
16	Development of a Practical Synthesis of a p38 Kinase Inhibitor via a Safe and Robust Amination. Organic Process Research and Development, 2012, 16, 1618-1625.	1.3	19
17	Discovery of pyrrolo[2,1-f][1,2,4]triazine C6-ketones as potent, orally active p38α MAP kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4633-4637.	1.0	13

Novel tricyclic inhibitors of IKK2: Discovery and SAR leading to the identification of 2-methoxy-N-((6-(1-methyl-4-(methylamino)-1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridin-7-yl)pyridin-2-yl)methyl)acetamide (BMS-066). Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7006-7012.

#	Article	lF	CITATIONS
19	Imidazo[4,5-d]thiazolo[5,4-b]pyridine based inhibitors of IKK2: Synthesis, SAR, PK/PD and activity in a preclinical model of rheumatoid arthritis. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 383-386.	1.0	11
20	Discovery of 4-(5-(Cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl- <i>N</i> -propylpyrrolo[1,2- <i>f</i>)[1,2,4]triazine-(BMS-582949), a Clinical p38α MAP Kinase Inhibitor for the Treatment of Inflammatory Diseases. Journal of Medicinal Chemistry, 2010, 53, 6629-6639.	6-carboxa 2.9	mide
21	Synthesis, initial SAR and biological evaluation of 1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridin-4-amine derived inhibitors of lκB kinase. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2646-2649.	1.0	19
22	Novel Tricyclic Inhibitors of lκB Kinase. Journal of Medicinal Chemistry, 2009, 52, 1994-2005.	2.9	25
23	Design, Synthesis, and Anti-inflammatory Properties of Orally Active 4-(Phenylamino)-pyrrolo[2,1-f][1,2,4]triazine p38î± Mitogen-Activated Protein Kinase Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 4-16.	2.9	81
24	The Discovery of Orally Active Triaminotriazine Aniline Amides as Inhibitors of p38 MAP Kinase. Journal of Medicinal Chemistry, 2004, 47, 6283-6291.	2.9	56