
Fabio Fornara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2897849/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science, 2007, 316, 1030-1033.	6.0	1,855
2	Regulation and Identity of Florigen: FLOWERING LOCUS T Moves Center Stage. Annual Review of Plant Biology, 2008, 59, 573-594.	8.6	889
3	The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes and Development, 2006, 20, 898-912.	2.7	744
4	SnapShot: Control of Flowering in Arabidopsis. Cell, 2010, 141, 550-550.e2.	13.5	529
5	Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Developmental Cell, 2009, 17, 75-86.	3.1	493
6	Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Annals of Botany, 2014, 114, 1445-1458.	1.4	223
7	The Dâ€lineage MADSâ€box gene <i>OsMADS13</i> controls ovule identity in rice. Plant Journal, 2007, 52, 690-699.	2.8	190
8	Analysis of the <i>Arabidopsis</i> Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering. Plant Cell, 2012, 24, 444-462.	3.1	178
9	Functional Characterization of OsMADS18, a Member of the AP1/SQUA Subfamily of MADS Box Genes. Plant Physiology, 2004, 135, 2207-2219.	2.3	164
10	Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biology, 2015, 16, 31.	3.8	150
11	SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the <i>Arabidopsis</i> shoot apex to regulate the floral transition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2760-9.	3.3	132
12	The <scp>GI</scp> – <scp>CDF</scp> module of Arabidopsis affects freezing tolerance and growth as well as flowering. Plant Journal, 2015, 81, 695-706.	2.8	104
13	Comparative analysis of rice MADS-box genes expressed during flower development. Sexual Plant Reproduction, 2002, 15, 113-122.	2.2	91
14	Plant Phase Transitions Make a SPLash. Cell, 2009, 138, 625-627.	13.5	80
15	Transcriptional and Post-transcriptional Mechanisms Limit Heading Date 1 (Hd1) Function to Adapt Rice to High Latitudes. PLoS Genetics, 2017, 13, e1006530.	1.5	78
16	EU-OSTID: A Collection of Transposon Insertional Mutants for Functional Genomics in Rice. Plant Molecular Biology, 2005, 59, 99-110.	2.0	77
17	Molecular Control of Flowering in Response to Day Length in Rice. Journal of Integrative Plant Biology, 2013, 55, 410-418.	4.1	69
18	DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biology, 2011, 11, 162.	1.6	65

Fabio Fornara

#	Article	IF	CITATIONS
19	Phosphorylation of <scp>CONSTANS</scp> and its <scp>COP</scp> 1â€dependent degradation during photoperiodic flowering of Arabidopsis. Plant Journal, 2015, 84, 451-463.	2.8	59
20	Antagonistic Transcription Factor Complexes Modulate the Floral Transition in Rice. Plant Cell, 2017, 29, 2801-2816.	3.1	59
21	The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. Journal of Experimental Botany, 2008, 59, 2181-2190.	2.4	58
22	Loss of floral repressor function adapts rice to higher latitudes in Europe. Journal of Experimental Botany, 2015, 66, 2027-2039.	2.4	56
23	The Importance of Being on Time: Regulatory Networks Controlling Photoperiodic Flowering in Cereals. Frontiers in Plant Science, 2017, 8, 665.	1.7	56
24	<i>Hd3a</i> , <i>RFT1</i> and <i>Ehd1</i> integrate photoperiodic and drought stress signals to delay the floral transition in rice. Plant, Cell and Environment, 2016, 39, 1982-1993.	2.8	48
25	Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genomics, 2020, 21, 294.	1.2	44
26	AGL24acts in concert withSOC1andFULduring Arabidopsis floral transition. Plant Signaling and Behavior, 2012, 7, 1251-1254.	1.2	41
27	A transcription factor coordinating internode elongation and photoperiodic signals in rice. Nature Plants, 2019, 5, 358-362.	4.7	41
28	Structural determinants for NF‥ subunit organization and NF‥/DNA association in plants. Plant Journal, 2021, 105, 49-61.	2.8	36
29	Alternative splicing enhances transcriptome complexity in desiccating seeds. Journal of Integrative Plant Biology, 2016, 58, 947-958.	4.1	26
30	Y flowering? Regulation and activity of CONSTANS and CCT-domain proteins in Arabidopsis and crop species. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 655-660.	0.9	25
31	OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem. New Phytologist, 2021, 229, 429-443.	3.5	21
32	Plant Flowering: Imposing DNA Specificity on Histone-Fold Subunits. Trends in Plant Science, 2018, 23, 293-301.	4.3	17
33	Control of flowering in rice through synthetic microProteins. Journal of Integrative Plant Biology, 2020, 62, 730-736.	4.1	8
34	Targeted knockout of the gene OsHOL1 removes methyl iodide emissions from rice plants. Scientific Reports, 2021, 11, 17010.	1.6	8
35	SPL transcription factors prevent inflorescence reversion in rice. Molecular Plant, 2021, 14, 1041-1043.	3.9	3
36	Control of perennial flowering and perenniality in Arabis alpina, a relative of Arabidopsis thaliana. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S195-S196.	0.8	2