Bianca Nowlan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2897616/publications.pdf Version: 2024-02-01

RIANCA NOWLAN

#	Article	IF	CITATIONS
1	NKG7 Is Required for Optimal Antitumor T-cell Immunity. Cancer Immunology Research, 2022, 10, 154-161.	1.6	16
2	Spinal cord injury reprograms muscle fibroadipogenic progenitors to form heterotopic bones within muscles. Bone Research, 2022, 10, 22.	5.4	6
3	Direct bone marrow injection of human bone marrow-derived stromal cells into mouse femurs results in greater prostate cancer PC-3 cell proliferation, but not specifically proliferation within the injected femurs. BMC Cancer, 2022, 22, 554.	1.1	0
4	Human bone marrow-derived stromal cell behavior when injected directly into the bone marrow of NOD-scid-gamma mice pre-conditioned with sub-lethal irradiation. Stem Cell Research and Therapy, 2021, 12, 231.	2.4	2
5	CD27, CD201, FLT3, CD48, and CD150 cell surface staining identifies long-term mouse hematopoietic stem cells in immunodeficient non-obese diabetic severe combined immune deficient-derived strains. Haematologica, 2020, 105, 71-82.	1.7	6
6	Bacterial Lipopolysaccharides Suppress Erythroblastic Islands and Erythropoiesis in the Bone Marrow in an Extrinsic and G- CSF-, IL-1-, and TNF-Independent Manner. Frontiers in Immunology, 2020, 11, 583550.	2.2	13
7	Control of Metastases via Myeloid CD39 and NK Cell Effector Function. Cancer Immunology Research, 2020, 8, 356-367.	1.6	60
8	ERYTHROPOIESIS SUPPRESSION BY BACTERIAL LIPOSACCHARIDES IS EXTRINSICALLY MEDIATED INDEPENDENTLY OF G-CSF. Experimental Hematology, 2019, 76, S59.	0.2	0
9	NEUROGENIC HETEROTOPIC OSSIFICATIONS ARE DERIVED FROM FIBROADIPOGENIC PROGENITORS IN THE SKELETAL MUSCLE NOT FROM SATELLITE CELLS. Experimental Hematology, 2019, 76, S89.	0.2	1
10	HIF prolyl hydroxylase inhibitor FG-4497 enhances mouse hematopoietic stem cell mobilization via VEGFR2/KDR. Blood Advances, 2019, 3, 406-418.	2.5	16
11	Complement receptor C3aR1 controls neutrophil mobilization following spinal cord injury through physiological antagonism of CXCR2. JCI Insight, 2019, 4, .	2.3	58
12	Prostaglandin I2 in the Endosteal Bone Marrow Niche As a Novel Regulator of Hematopoietic Stem Cells. Blood, 2018, 132, 2575-2575.	0.6	3
13	Engineering a humanized bone organ model in mice to study bone metastases. Nature Protocols, 2017, 12, 639-663.	5.5	91
14	HIF-1α-stabilizing agent FG-4497 rescues human CD34 + cell mobilization inÂresponse to G-CSF in immunodeficient mice. Experimental Hematology, 2017, 52, 50-55.e6.	0.2	8
15	Fms-like tyrosine kinase 3 (Flt3) ligand depletes erythroid island macrophages and blocks medullar erythropoiesis in the mouse. Experimental Hematology, 2016, 44, 207-212.e4.	0.2	20
16	Prostaglandin I2 is produced in the endosteal region of the bone marrow and protects haematopoietic stem cell from irradiation stress. Experimental Hematology, 2016, 44, S102-S103.	0.2	1
17	Hematopoietic stem cell mobilization and erythropoiesis suppression in response to lipopolysaccharides involve two distinct TLR4-depedent mechanisms with different requirement for G-CSF receptors. Experimental Hematology, 2016, 44, S60.	0.2	2
18	Mobilization of hematopoietic stem cells with highest self-renewal by G-CSF precedes clonogenic cell mobilization peak. Experimental Hematology, 2016, 44, 303-314.e1.	0.2	18

BIANCA NOWLAN

#	Article	IF	CITATIONS
19	Suppression of Medullar Erythropoiesis in Response to Bacterial Lipopolysaccharides (LPS) Involves Two Distinct TLR4-Dependent Mechanisms with Contrasted Requirements for G-CSF Receptors. Blood, 2016, 128, 546-546.	0.6	0
20	Autologous haematopoietic stem cell transplantation requires recipient BM macrophages. Experimental Hematology, 2015, 43, S71.	0.2	0
21	Tissue engineered humanized bone supports human hematopoiesisÂinÂvivo. Biomaterials, 2015, 61, 103-114.	5.7	62
22	Hypoxia inducible factor (HIF)-2α accelerates disease progression in mouse models of leukemia and lymphoma but is not a poor prognosis factor in human AML. Leukemia, 2015, 29, 2075-2085.	3.3	36
23	HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α. Leukemia, 2015, 29, 1366-1378.	3.3	45
24	Bacterial liposaccharides block medullary erythropoiesis by depleting F4/80+ VCAM1+ CD169+ ER-HR3+ Ly-6G+ erythroid island macrophages in the bone marrow. Experimental Hematology, 2014, 42, S40.	0.2	0
25	Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80+VCAM1+CD169+ER-HR3+Ly6G+ erythroid island macrophages in the mouse. Experimental Hematology, 2014, 42, 547-561.e4.	0.2	82
26	Mobilising doses of G-CSF stop medullary erythropoiesis by depleting CD169+ macrophages. Experimental Hematology, 2013, 41, S59.	0.2	0
27	Hypoxia inducible factor (HIF)-2α enhances proliferation of malignant haematopoietic cells in the hypoxic malignant bone marrow. Experimental Hematology, 2013, 41, S14.	0.2	0
28	Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood, 2013, 121, 759-769.	0.6	109
29	B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2. Haematologica, 2013, 98, 325-333.	1.7	38
30	Hypoxia Inducible Factor (HIF)-2α Enhances Proliferation Of Malignant Hematopoietic Cells In The Hypoxic Malignant Bone Marrow. Blood, 2013, 122, 2895-2895.	0.6	0
31	Mobilizing Doses Of G-CSF Stop Medullary Erythropoiesis By Depleting F4/80+ VCAM1+ ER-HR3+ CD169+ Erythroid-Island Macrophages. Blood, 2013, 122, 309-309.	0.6	0
32	Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nature Medicine, 2012, 18, 1651-1657.	15.2	364
33	Flow Cytometry Analysis of Cell Cycling and Proliferation in Mouse Hematopoietic Stem and Progenitor Cells. Methods in Molecular Biology, 2012, 844, 31-43.	0.4	16
34	Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia, 2012, 26, 1594-1601.	3.3	136
35	FG-4497, a Pharmacological Stabilizer of HIF-1α Protein, Synergistically Enhances Hematopoietic Stem Cells (HSC) Mobilization in Response to G-CSF and Plerixafor. Blood, 2012, 120, 216-216.	0.6	2
36	Impairment of Hematopoietic Stem Cell (HSC) Niche by G-CSF Is Associated with Rapid Mobilization of Serially Reconstituting HSC and Reduced Competitive Repopulation of Mobilized Bone Marrow. Blood, 2011, 118, 1889-1889.	0.6	2

#	Article	IF	CITATIONS
37	Oxygen-Independent Stabilization of the Oxygen-Labile Transcription Factor HIF-1α with Dimethyloxalyl Glycine or FG-4497 Increases Hematopoietic Stem Cell Quiescence In Vivo and Mobilization in Response to G-CSF. Blood, 2011, 118, 2334-2334.	0.6	0
38	Mobilizing Agents G-CSF, Cyclophosphamide or AMD3100 (Plerixafor) Have Distinct Effects on Osteoblasts, Hematopoietic Stem Cell Niches, and B-Lymphopoiesis,. Blood, 2011, 118, 4005-4005.	0.6	0
39	Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood, 2010, 116, 4815-4828.	0.6	695
40	Absence or Blockage of E-Selectin-Mediated Cell Adhesion Delays Hematopoietic Stem Cell (HSC) Turn-Over and Enhances Chemoresistance Blood, 2009, 114, 564-564.	0.6	9
41	Hematopoietic Progenitor Cell Mobilization Results in Hypoxia with Increased Hypoxia-Inducible Transcription Factor-1α and Vascular Endothelial Growth Factor A in Bone Marrow. Stem Cells, 2007, 25, 1954-1965.	1.4	128
42	Absence of E-Selectin at the Vascular Niche Delays Hematopoietic Stem Cell Turn-Over Blood, 2007, 110, 609-609.	0.6	2
43	Bacillus okhensis sp. nov., a halotolerant and alkalitolerant bacterium from an Indian saltpan. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1073-1077.	0.8	52