
Julia Schmale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2897274/publications.pdf Version: 2024-02-01

LILLA SCHMALE

#	Article	IF	CITATIONS
1	Key challenges for tropospheric chemistry in the Southern Hemisphere. Elementa, 2022, 10, .	1.1	7
2	Overview of the MOSAiC expedition: Atmosphere. Elementa, 2022, 10, .	1.1	121
3	Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface. Environmental Research Letters, 2022, 17, 034032.	2.2	9
4	Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols. Nature Geoscience, 2022, 15, 196-202.	5.4	31
5	Highly Active Iceâ€Nucleating Particles at the Summer North Pole. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	22
6	Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmospheric Chemistry and Physics, 2022, 22, 3067-3096.	1.9	40
7	Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: a multi-species, multi-model study. Atmospheric Chemistry and Physics, 2022, 22, 5775-5828.	1.9	15
8	Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	12
9	Annual cycle observations of aerosols capable of ice formation in central Arctic clouds. Nature Communications, 2022, 13, .	5.8	19
10	Aerosols in current and future Arctic climate. Nature Climate Change, 2021, 11, 95-105.	8.1	111
11	Large contribution to secondary organic aerosol from isoprene cloud chemistry. Science Advances, 2021, 7, .	4.7	24
12	Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured Over the Pristine Southern Ocean. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034811.	1.2	15
13	Differentiation of coarse-mode anthropogenic, marine and dust particles in the High Arctic islands of Svalbard. Atmospheric Chemistry and Physics, 2021, 21, 11317-11335.	1.9	7
14	Progress in Unraveling Atmospheric New Particle Formation and Growth Across the Arctic. Geophysical Research Letters, 2021, 48, e2021GL094198.	1.5	14
15	Black carbon and dust in the Third Pole glaciers: Revaluated concentrations, mass absorption cross-sections and contributions to glacier ablation. Science of the Total Environment, 2021, 789, 147746.	3.9	14
16	Insights into the molecular composition of semi-volatile aerosols in the summertime central Arctic Ocean using FIGAERO-CIMS. Environmental Science Atmospheres, 2021, 1, 161-175.	0.9	18
17	Lowâ€Volatility Vapors and New Particle Formation Over the Southern Ocean During the Antarctic Circumnavigation Expedition. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035126.	1.2	14
18	New Insights Into the Composition and Origins of Ultrafine Aerosol in the Summertime High Arctic. Geophysical Research Letters, 2021, 48, e2021GL094395.	1.5	17

JULIA SCHMALE

#	Article	IF	CITATIONS
19	Constraining the response factors of an extractive electrospray ionization mass spectrometer for near-molecular aerosol speciation. Atmospheric Measurement Techniques, 2021, 14, 6955-6972.	1.2	10
20	Exploring the coupled ocean and atmosphere system with a data science approach applied to observations from the Antarctic Circumnavigation Expedition. Earth System Dynamics, 2021, 12, 1295-1369.	2.7	12
21	Black Carbon Aerosols in the Lower Free Troposphere are Heavily Coated in Summer but Largely Uncoated in Winter at Jungfraujoch in the Swiss Alps. Geophysical Research Letters, 2020, 47, e2020GL088011.	1.5	9
22	Prepare Scientists to Engage in Scienceâ€Policy. Earth's Future, 2020, 8, e2020EF001628.	2.4	6
23	Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nature Communications, 2020, 11, 4924.	5.8	96
24	Satellite Retrieval of Cloud Condensation Nuclei Concentrations in Marine Stratocumulus by Using Clouds as CCN Chambers. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032409.	1.2	14
25	Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean. Atmospheric Chemistry and Physics, 2020, 20, 5811-5835.	1.9	28
26	Online Aerosol Chemical Characterization by Extractive Electrospray Ionization–Ultrahigh-Resolution Mass Spectrometry (EESI-Orbitrap). Environmental Science & Technology, 2020, 54, 3871-3880.	4.6	25
27	The value of remote marine aerosol measurements for constraining radiative forcing uncertainty. Atmospheric Chemistry and Physics, 2020, 20, 10063-10072.	1.9	27
28	Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans. Atmospheric Chemistry and Physics, 2020, 20, 15191-15206.	1.9	40
29	Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results. Atmospheric Chemistry and Physics, 2020, 20, 8551-8592.	1.9	26
30	Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements. Atmospheric Measurement Techniques, 2020, 13, 3487-3506.	1.2	8
31	Dissolved organic carbon in snow cover of the Chinese Altai Mountains, Central Asia: Concentrations, sources and light-absorption properties. Science of the Total Environment, 2019, 647, 1385-1397.	3.9	39
32	Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE). Bulletin of the American Meteorological Society, 2019, 100, 2260-2283.	1.7	71
33	Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. Atmospheric Chemistry and Physics, 2019, 19, 8591-8617.	1.9	60
34	Cloud droplet activation properties and scavenged fraction of black carbon in liquid-phase clouds at the high-alpine research station Jungfraujoch (3580 m a.s.l.). Atmospheric Chemistry and Physics, 2019, 19, 3833-3855.	1.9	25
35	Variation of Ice Nucleating Particles in the European Arctic Over the Last Centuries. Geophysical Research Letters, 2019, 46, 4007-4016.	1.5	40
36	Droplet activation behaviour of atmospheric black carbon particles in fog as a function of their size and mixing state. Atmospheric Chemistry and Physics, 2019, 19, 2183-2207.	1.9	17

JULIA SCHMALE

#	Article	IF	CITATIONS
37	Fostering multidisciplinary research on interactions between chemistry, biology, and physics within the coupled cryosphere-atmosphere system. Elementa, 2019, 7, .	1.1	6
38	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	1.9	108
39	Long-term monitoring of black carbon across Germany. Atmospheric Environment, 2018, 185, 41-52.	1.9	44
40	Local Arctic Air Pollution: A Neglected but Serious Problem. Earth's Future, 2018, 6, 1385-1412.	2.4	96
41	Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Scientific Reports, 2017, 7, 40501.	1.6	63
42	The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty. Bulletin of the American Meteorological Society, 2017, 98, 1857-1877.	1.7	52
43	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	2.4	44
44	Lightâ€ e bsorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6915-6933.	1.2	114
45	Setting the aerosol baseline $\hat{a} \in $ an Antarctic opportunity. Antarctic Science, 2017, 29, 297-297.	0.5	1
46	A survey on the perceived need and value of decision-support tools for joint mitigation of air pollution and climate change in cities. Elementa, 2017, 5, .	1.1	2
47	Sustainable policy—key considerations for air quality and climate change. Current Opinion in Environmental Sustainability, 2016, 23, 85-91.	3.1	31
48	Measurement of ammonia emissions from temperate and sub-polar seabird colonies. Atmospheric Environment, 2016, 134, 40-50.	1.9	24
49	Short-term solutions. Nature Climate Change, 2016, 6, 234-235.	8.1	1
50	Building Interfaces That Work: A Multi-stakeholder Approach to Air Pollution and Climate Change Mitigation. Advances in Natural and Technological Hazards Research, 2016, , 65-76.	1.1	1
51	An Integrated Assessment Method for Sustainable Transport System Planning in a Middle Sized German City. Sustainability, 2015, 7, 1329-1354.	1.6	21
52	State of the Climate in 2013. Bulletin of the American Meteorological Society, 2014, 95, S1-S279.	1.7	138
53	New Directions: Support for integrated decision-making in air and climate policies – Development of a metrics-based information portal. Atmospheric Environment, 2014, 90, 146-148.	1.9	13
54	Air pollution: Clean up our skies. Nature, 2014, 515, 335-337.	13.7	99

JULIA SCHMALE

#	Article	IF	CITATIONS
55	Sub-Antarctic marine aerosol: dominant contributions from biogenic sources. Atmospheric Chemistry and Physics, 2013, 13, 8669-8694.	1.9	82
56	Future Arctic Research: Integrative Approaches to Scientific and Methodological Challenges. Eos, 2013, 94, 292-292.	0.1	2
57	Development of procedures in Rapid Manufacturing to improve individual therapy in Rehabilitation. Biomedizinische Technik, 2012, 57, .	0.9	0
58	Early Career Researchers and Mentors Work Together to Shape the Future of the Arctic Monitoring and Assessment Programme. Arctic, 2012, 65, .	0.2	2
59	Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008. Atmospheric Chemistry and Physics, 2011, 11, 10097-10123.	1.9	52
60	Physical and chemical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign. Atmospheric Chemistry and Physics, 2011, 11, 10947-10963.	1.9	30
61	In-situ observations of young contrails – overview and selected results from the CONCERT campaign. Atmospheric Chemistry and Physics, 2010, 10, 9039-9056.	1.9	93
62	Aerosol layers from the 2008 eruptions of Mount Okmok and Mount Kasatochi: In situ upper troposphere and lower stratosphere measurements of sulfate and organics over Europe. Journal of Geophysical Research, 2010, 115, .	3.3	46
63	Airborne stratospheric ITCIMS measurements of SO ₂ , HCl, and HNO ₃ in the aged plume of volcano Kasatochi. Journal of Geophysical Research, 2010, 115, .	3.3	36
64	Laboratory pre-assays for soil remediation by electro synthesis of oxidants and their electrokinetic distribution. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 907-912.	0.9	5