List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2897272/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-Efficiency Ternary Organic Solar Cells Enabled by Synergizing Dicyanomethylene-Functionalized<br>Coumarin Donors and Fullerene-Free Acceptors. ACS Applied Energy Materials, 2022, 5, 9020-9030.                                      | 5.1  | 7         |
| 2  | Energy-level modulation of coumarin-based molecular donors for efficient all small molecule fullerene-free organic solar cells. Journal of Materials Chemistry A, 2021, 9, 1563-1573.                                                      | 10.3 | 18        |
| 3  | Exploring membrane viscosity at the headgroup region utilizing a hemicyanine-based fluorescent probe. Journal of Molecular Liquids, 2021, 325, 115152.                                                                                     | 4.9  | 5         |
| 4  | Incorporation of a Guaiacolâ€Based Small Molecule Guest Donor Enables Efficient Nonfullerene<br>Acceptorâ€Based Ternary Organic Solar Cells. Solar Rrl, 2021, 5, 2100402.                                                                  | 5.8  | 8         |
| 5  | Fullerene-Free All-Small-Molecule Ternary Organic Solar Cells with Two Compatible Fullerene-Free<br>Acceptors and a Coumarin Donor Enabling a Power Conversion Efficiency of 14.5%. ACS Applied Energy<br>Materials, 2021, 4, 11537-11544. | 5.1  | 7         |
| 6  | Semitransparent organic solar cells: from molecular design to structure–performance<br>relationships. Journal of Materials Chemistry C, 2021, 10, 13-43.                                                                                   | 5.5  | 25        |
| 7  | Material perceptions and advances in molecular heteroacenes for organic solar cells. Energy and Environmental Science, 2020, 13, 4738-4793.                                                                                                | 30.8 | 50        |
| 8  | Efficient Fullerene-Free Organic Solar Cells Using a Coumarin-Based Wide-Band-Gap Donor Material.<br>ACS Applied Materials & Interfaces, 2020, 12, 41869-41876.                                                                            | 8.0  | 21        |
| 9  | Interfacial Materials for Organic Solar Cells. Energy, Environment, and Sustainability, 2020, , 373-423.                                                                                                                                   | 1.0  | 3         |
| 10 | Fullerene-Free Molecular Acceptors for Organic Photovoltaics. Energy, Environment, and Sustainability, 2019, , 221-279.                                                                                                                    | 1.0  | 2         |
| 11 | Transition-metal-based layered double hydroxides tailored for energy conversion and storage.<br>Journal of Materials Chemistry A, 2018, 6, 12-29.                                                                                          | 10.3 | 170       |
| 12 | High Open Circuit Voltage for Perovskite Solar Cells with S,Siâ€Heteropentaceneâ€Based Hole<br>Conductors. European Journal of Inorganic Chemistry, 2018, 2018, 4573-4578.                                                                 | 2.0  | 10        |
| 13 | Low Energy Gap Triphenylamine–Heteropentacene–Dicyanovinyl Triad for Solution-Processed<br>Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2018, 122, 11262-11269.                                                       | 3.1  | 8         |
| 14 | The influence of the central acceptor unit on the optoelectronic properties and photovoltaic<br>performance of A–D–A–D–A-type co-oligomers. Organic Chemistry Frontiers, 2017, 4, 755-766.                                                 | 4.5  | 8         |
| 15 | Unprecedented low energy losses in organic solar cells with high external quantum efficiencies by<br>employing non-fullerene electron acceptors. Journal of Materials Chemistry A, 2017, 5, 14887-14897.                                   | 10.3 | 38        |
| 16 | Organic and Hybrid Solar Cells Based on Well-Defined Organic Semiconductors and Morphologies.<br>Advances in Polymer Science, 2017, , 25-49.                                                                                               | 0.8  | 1         |
| 17 | Dicyanovinylene-Substituted Oligothiophenes for Organic Solar Cells. Advances in Polymer Science, 2017, , 51-75.                                                                                                                           | 0.8  | 6         |
| 18 | Origin of Photoelectrochemical Generation of Dihydrogen by a Dye-Sensitized Photocathode without<br>an Intentionally Introduced Catalyst. Journal of Physical Chemistry C, 2017, 121, 25836-25846.                                         | 3.1  | 16        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Donor–Acceptor-Type <i>S</i> , <i>N</i> -Heteroacene-Based Hole-Transporting Materials for Efficient<br>Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 44423-44428.                                                                 | 8.0  | 31        |
| 20 | Highâ€Efficiency Perovskite Solar Cells Employing a <i>S</i> , <i>N</i> â€Heteropentaceneâ€based D–A<br>Holeâ€Transport Material. ChemSusChem, 2016, 9, 433-438.                                                                                          | 6.8  | 61        |
| 21 | Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells. NPG Asia<br>Materials, 2016, 8, e305-e305.                                                                                                                   | 7.9  | 71        |
| 22 | High performance A–D–A oligothiophene-based organic solar cells employing two-step annealing and<br>solution-processable copper thiocyanate (CuSCN) as an interfacial hole transporting layer. Journal of<br>Materials Chemistry A, 2016, 4, 17344-17353. | 10.3 | 21        |
| 23 | Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst. Electrochimica Acta, 2016, 219, 773-780.                                                                                      | 5.2  | 22        |
| 24 | The influence of alkyl side chains on molecular packing and solar cell performance of<br>dithienopyrrole-based oligothiophenes. Journal of Materials Chemistry A, 2016, 4, 10514-10523.                                                                   | 10.3 | 21        |
| 25 | Modulation of band gap and p- versus n-semiconductor character of ADA dyes by core and acceptor group variation. Organic Chemistry Frontiers, 2016, 3, 545-555.                                                                                           | 4.5  | 25        |
| 26 | Development of strongly absorbing S,N-heterohexacene-based donor materials for efficient vacuum-processed organic solar cells. Journal of Materials Chemistry C, 2016, 4, 3715-3725.                                                                      | 5.5  | 26        |
| 27 | Fused Thiopheneâ€Pyrroleâ€Containing Ring Systems up to a Heterodecacene. Angewandte Chemie -<br>International Edition, 2015, 54, 12334-12338.                                                                                                            | 13.8 | 80        |
| 28 | Anellierte Thiophenâ€Pyrrolâ€haltige Ringsysteme bis zu einem Heterodecacen. Angewandte Chemie, 2015,<br>127, 12511-12515.                                                                                                                                | 2.0  | 20        |
| 29 | Functional tuning of A–D–A oligothiophenes: the effect of solvent vapor annealing on blend<br>morphology and solar cell performance. Journal of Materials Chemistry A, 2015, 3, 13738-13748.                                                              | 10.3 | 32        |
| 30 | Application of the Tris(acetylacetonato)iron(III)/(II) Redox Couple in pâ€Type Dyeâ€Sensitized Solar Cells.<br>Angewandte Chemie - International Edition, 2015, 54, 3758-3762.                                                                            | 13.8 | 184       |
| 31 | A–D–A-type S,N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 17738-17746.                                                                                             | 10.3 | 105       |
| 32 | Acceptorâ€Substituted <i>S</i> , <i>N</i> â€Heteropentacenes of Different Conjugation Length:<br>Structure–Property Relationships and Solar Cell Performance. Advanced Functional Materials, 2015,<br>25, 3414-3424.                                      | 14.9 | 35        |
| 33 | Ï€â€Conjugated [2]Catenanes Based on Oligothiophenes and Phenanthrolines: Efficient Synthesis and Electronic Properties. Chemistry - A European Journal, 2015, 21, 7193-7210.                                                                             | 3.3  | 17        |
| 34 | A dopant-free spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] based hole-transport material for efficient<br>perovskite solar cells. Materials Horizons, 2015, 2, 613-618.                                                                                   | 12.2 | 131       |
| 35 | Dominating Energy Losses in NiO pâ€īype Dye‣ensitized Solar Cells. Advanced Energy Materials, 2015, 5,<br>1401387.                                                                                                                                        | 19.5 | 75        |
| 36 | A-D-A-Type Oligothiophenes Containing Benzothiadiazole Terminal Units for Small Molecule Organic<br>Solar Cells. Organic Photonics and Photovoltaics, 2014, 2, .                                                                                          | 1.3  | 3         |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Solar Cells: A–D–Aâ€type <i>S</i> , <i>N</i> â€Heteropentacenes: Nextâ€Generation Molecular Donor<br>Materials for Efficient Vacuumâ€Processed Organic Solar Cells (Adv. Mater. 42/2014). Advanced<br>Materials, 2014, 26, 7279-7279. | 21.0 | 0         |
| 38 | Acceptor–Donor–Acceptor Oligomers Containing Dithieno[3,2-b:2′,3′-d]pyrrole and<br>Thieno[2,3-c]pyrrole-4,6-dione Units for Solution-Processed Organic Solar Cells. Organic Letters,<br>2014, 16, 2642-2645.                          | 4.6  | 30        |
| 39 | Efficiency Improvement of Solutionâ€Processed Dithienopyrroleâ€Based Aâ€Dâ€A Oligothiophene<br>Bulkâ€Heterojunction Solar Cells by Solvent Vapor Annealing. Advanced Energy Materials, 2014, 4,<br>1400266.                           | 19.5 | 144       |
| 40 | Synthesis and Structural Analysis of Thiophene-Pyrrole-Based <i>S</i> , <i>N</i> -Heteroacenes. Organic<br>Letters, 2014, 16, 362-365.                                                                                                | 4.6  | 62        |
| 41 | Synthesis and characterization of benzo- and naphtho[2,1-b:3,4-b′]dithiophene-containing oligomers for photovoltaic applications. Journal of Materials Chemistry C, 2014, 2, 4879-4892.                                               | 5.5  | 21        |
| 42 | Synthesis and Characterization of Organic Dyes with Various Electronâ€Accepting Substituents for pâ€Type Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2014, 9, 3251-3263.                                               | 3.3  | 23        |
| 43 | Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing<br>materials for efficient perovskite-based solar cells. Energy and Environmental Science, 2014, 7, 2981.                                 | 30.8 | 127       |
| 44 | A–D–Aâ€ŧype <i>S</i> , <i>N</i> â€Heteropentacenes: Nextâ€Generation Molecular Donor Materials for<br>Efficient Vacuumâ€Processed Organic Solar Cells. Advanced Materials, 2014, 26, 7217-7223.                                       | 21.0 | 82        |
| 45 | Mannose-functionalized dendritic oligothiophenes: synthesis, characterizations and studies on their interaction with Concanavalin A. Organic and Biomolecular Chemistry, 2013, 11, 5656.                                              | 2.8  | 11        |
| 46 | Synthesis and Ultrafast Time Resolved Spectroscopy of Peripherally Functionalized Zinc<br>Phthalocyanine Bearing Oligothienylene-ethynylene Subunits. Journal of Physical Chemistry C, 2013,<br>117, 20912-20918.                     | 3.1  | 14        |
| 47 | Dithienopyrrole-based oligothiophenes for solution-processed organic solar cells. Chemical Communications, 2013, 49, 10865.                                                                                                           | 4.1  | 57        |
| 48 | Highly Efficient pâ€Type Dyeâ€Sensitized Solar Cells based on Tris(1,2â€diaminoethane)Cobalt(II)/(III)<br>Electrolytes. Angewandte Chemie - International Edition, 2013, 52, 602-605.                                                 | 13.8 | 177       |
| 49 | Synthesis, photophysical and electrochemical characterization of terpyridine-functionalized<br>dendritic oligothiophenes and their Ru(II) complexes. Beilstein Journal of Organic Chemistry, 2013, 9,<br>866-876.                     | 2.2  | 20        |
| 50 | Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device. Energy and Environmental Science, 2012, 5, 9472.                                                               | 30.8 | 167       |
| 51 | Synthesis and characterization of perylene–bithiophene–triphenylamine triads: studies on the effect<br>of alkyl-substitution in p-type NiO based photocathodes. Journal of Materials Chemistry, 2012, 22, 7366.                       | 6.7  | 60        |
| 52 | Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(ii) oxide microballs. Energy and Environmental Science, 2012, 5, 8896.                                                                      | 30.8 | 99        |
| 53 | Correlation of π-Conjugated Oligomer Structure with Film Morphology and Organic Solar Cell<br>Performance. Journal of the American Chemical Society, 2012, 134, 11064-11067.                                                          | 13.7 | 260       |
| 54 | Synthesis and characterizations of red/near-IR absorbing A–D–A–D–A-type oligothiophenes containing thienothiadiazole and thienopyrazine central units. Journal of Materials Chemistry, 2012, 22, 2701-2712.                           | 6.7  | 35        |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Thiophene-based donor–acceptor co-oligomers by copper-catalyzed 1,3-dipolar cycloaddition. Beilstein<br>Journal of Organic Chemistry, 2012, 8, 683-692.                                                      | 2.2  | 34        |
| 56 | Significant Improvement of Dyeâ€Sensitized Solar Cell Performance by Small Structural Modification in<br>ï€â€Conjugated Donor–Acceptor Dyes. Advanced Functional Materials, 2012, 22, 1291-1302.             | 14.9 | 404       |
| 57 | Synthesis and Structure–Property Correlations of Dicyanovinylâ€&ubstituted Oligoselenophenes and their Application in Organic Solar Cells. Advanced Functional Materials, 2012, 22, 4322-4333.               | 14.9 | 40        |
| 58 | Clickâ€Functionalized Ru(II) Complexes for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2012, 2,<br>1004-1012.                                                                                    | 19.5 | 22        |
| 59 | Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology.<br>Angewandte Chemie - International Edition, 2012, 51, 2020-2067.                                           | 13.8 | 1,632     |
| 60 | Carbohydrate-functionalized oligothiophenes for concanavalin A recognition. Chemical Communications, 2011, 47, 1324-1326.                                                                                    | 4.1  | 29        |
| 61 | A-D-A-D-A-Type Oligothiophenes for Vacuum-Deposited Organic Solar Cells. Organic Letters, 2011, 13, 90-93.                                                                                                   | 4.6  | 60        |
| 62 | Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes. Chemical Communications, 2011, 47, 1982.                                                    | 4.1  | 92        |
| 63 | Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles. Chemical Communications, 2011, 47, 4808.                                                                              | 4.1  | 104       |
| 64 | "Click-chemistry―approach in the design of 1,2,3-triazolyl-pyridine ligands and their Ru(ii)-complexes<br>for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 3726.                    | 6.7  | 69        |
| 65 | Dicyanovinylene-Substituted Selenophene–Thiophene Co-oligomers for Small-Molecule Organic Solar<br>Cells. Chemistry of Materials, 2011, 23, 4435-4444.                                                       | 6.7  | 76        |
| 66 | Dicyanovinyl–Substituted Oligothiophenes: Structureâ€Property Relationships and Application in<br>Vacuumâ€Processed Small Molecule Organic Solar Cells. Advanced Functional Materials, 2011, 21,<br>897-910. | 14.9 | 246       |
| 67 | A Thiopheneâ€Based Anchoring Ligand and Its Heteroleptic Ru(II)â€Complex for Efficient Thinâ€Film<br>Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2011, 21, 963-970.                          | 14.9 | 53        |
| 68 | Synthesis and Characterization of Acceptor‣ubstituted Oligothiophenes for Solar Cell Applications.<br>Advanced Energy Materials, 2011, 1, 265-273.                                                           | 19.5 | 50        |
| 69 | D-Ï€-A Sensitizers for Dye-Sensitized Solar Cells: Linear vs Branched Oligothiophenes. Chemistry of<br>Materials, 2010, 22, 1836-1845.                                                                       | 6.7  | 144       |
| 70 | Highly efficient photocathodes for dye-sensitized tandem solar cells. Nature Materials, 2010, 9, 31-35.                                                                                                      | 27.5 | 585       |
| 71 | Shapeâ€Persistent Oligothienylene–Ethynyleneâ€Based Dendrimers: Synthesis, Spectroscopy and<br>Electrochemical Characterization. Chemistry - A European Journal, 2009, 15, 13521-13534.                      | 3.3  | 36        |
| 72 | A Dendritic Oligothiophene Ruthenium Sensitizer for Stable Dye‣ensitized Solar Cells. ChemSusChem, 2009, 2, 761-768.                                                                                         | 6.8  | 35        |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Metalâ€Free Organic Dyes for Dyeâ€Sensitized Solar Cells: From Structure: Property Relationships to<br>Design Rules. Angewandte Chemie - International Edition, 2009, 48, 2474-2499.                                                | 13.8 | 2,545     |
| 74 | Functional Oligothiophenes: Molecular Design for Multidimensional Nanoarchitectures and Their<br>Applications. Chemical Reviews, 2009, 109, 1141-1276.                                                                              | 47.7 | 1,314     |
| 75 | Design and synthesis of a novel anchoring ligand for highly efficient thin film dye-sensitized solar cells. Chemical Communications, 2009, , 7146.                                                                                  | 4.1  | 42        |
| 76 | Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by<br>surface-enhanced resonance raman and theoretical calculations. Journal of Chemical Physics, 2008,<br>129, 184702.              | 3.0  | 25        |
| 77 | Surface-Enhanced Resonance Raman Scattering and Density Functional Calculations of Hemicyanine<br>Adsorbed on Colloidal Silver Surface. Journal of Physical Chemistry A, 2006, 110, 1805-1811.                                      | 2.5  | 27        |
| 78 | Synthesis and characterization of spin-coatable tert-amine molecules for hole-transport in organic light-emitting diodes. Tetrahedron Letters, 2006, 47, 4715-4719.                                                                 | 1.4  | 29        |
| 79 | Synthesis and characterisation of soluble aluminium complex dyes based on<br>5-substituted-8-hydroxyquinoline derivatives for OLED applications. Dyes and Pigments, 2005, 66, 89-97.                                                | 3.7  | 48        |
| 80 | Dendrimers. , 2004, , 432-440.                                                                                                                                                                                                      |      | 4         |
| 81 | Synthesis of 5-alkoxymethyl- and 5-aminomethyl-substituted 8-hydroxyquinoline derivatives and their<br>luminescent Al(III) complexes for OLED applications. Tetrahedron Letters, 2004, 45, 6265-6268.                               | 1.4  | 47        |
| 82 | New push–pull type dendritic stilbazolium dyes: synthesis, photophysical and electrochemical<br>investigation. Dyes and Pigments, 2004, 63, 191-202.                                                                                | 3.7  | 23        |
| 83 | Synthesis of Water-Soluble, Ester-Terminated Dendrons and Dendrimers Containing Internal PEG<br>Linkages. Macromolecules, 2004, 37, 8262-8268.                                                                                      | 4.8  | 19        |
| 84 | Synthesis, spectroscopic and electrochemical investigation of some new stilbazolium dyes. Dyes and Pigments, 2003, 58, 227-237.                                                                                                     | 3.7  | 13        |
| 85 | Improved Synthesis of an Ethereal Tetraamine Core for Dendrimer Construction. Journal of Organic Chemistry, 2002, 67, 3957-3960.                                                                                                    | 3.2  | 18        |
| 86 | Time-resolved fluorescence studies of aminostyryl pyridinium dyes in organic solvents and surfactant solutions. Journal of Luminescence, 2001, 92, 175-188.                                                                         | 3.1  | 59        |
| 87 | Cyanines during the 1990s:Â A Review. Chemical Reviews, 2000, 100, 1973-2012.                                                                                                                                                       | 47.7 | 1,381     |
| 88 | Dye–surfactant interaction: chain folding during solubilization of styryl pyridinium dyes in sodium<br>dodecyl sulfate aggregates. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 121, 63-73.                       | 3.9  | 41        |
| 89 | Interaction of N-alkyl styryl pyridinium dyes with TX-100 in aqueous medium: Role of the alkyl chain<br>during solubilisation. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 116, 79-84.                           | 3.9  | 41        |
| 90 | Dye–Surfactant Interaction: Role of an Alkyl Chain in the Localization of Styrylpyridinium Dyes in a<br>Hydrophobic Force Field of a Cationic Surfactant (CTAB). Bulletin of the Chemical Society of Japan,<br>1997, 70, 2913-2918. | 3.2  | 38        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Reversal in Solvatochromism: AnET(30) Switch for a New Class of Cyanine Dyes. Bulletin of the<br>Chemical Society of Japan, 1996, 69, 2581-2584.                                                                     | 3.2 | 20        |
| 92 | Photochemistry in microemulsions: Fluorescence quenching of naphthols and their O-alkyl derivatives by CCl4. Journal of Luminescence, 1996, 69, 95-104.                                                              | 3.1 | 10        |
| 93 | Conformational Selectivity of Merocyanine on Nanostructured Silver Films: Surface Enhanced<br>Resonance Raman Scattering (SERRS) and Density Functional Theoretical (DFT) Study. Frontiers in<br>Chemistry, 0, 10, . | 3.6 | 3         |