Leen Bastiaens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2896996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of pH on Rhodomonas salina growth, biochemical composition, and taste, produced in semi-large scale under sunlight conditions. Journal of Applied Phycology, 2022, 34, 1215-1226.	2.8	7
2	Nutritional Profiling and Preliminary Bioactivity Screening of Five Micro-Algae Strains Cultivated in Northwest Europe. Foods, 2021, 10, 1516.	4.3	16
3	Simplified determination of the content and average degree of acetylation of chitin in crude black soldier fly larvae samples. Carbohydrate Research, 2020, 488, 107899.	2.3	20
4	Characteristics of chitin extracted from black soldier fly in different life stages. International Journal of Biological Macromolecules, 2020, 165, 3206-3214.	7.5	87
5	Searching for Appropriate Storage Conditions for Short-Term Wet Preservation of Porphyridium purpureum. Applied Sciences (Switzerland), 2020, 10, 8315.	2.5	7
6	Evaluation of Microbial Load, Formation of Odorous Metabolites and Lipid Stability during Wet Preservation of Nannochloropsis gaditana Concentrates. Applied Sciences (Switzerland), 2020, 10, 3419.	2.5	7
7	Agri-Food Side-Stream Inclusion in The Diet of Alphitobius Diaperinus. Part 2: Impact on Larvae Composition. Insects, 2020, 11, 190.	2.2	16
8	Degree of Hydrolysis Affects the Techno-Functional Properties of Lesser Mealworm Protein Hydrolysates. Foods, 2020, 9, 381.	4.3	49
9	Agri-Food Side-Stream Inclusions in the Diet of Alphitobius diaperinus Part 1: Impact on Larvae Growth Performance Parameters. Insects, 2020, 11, 79.	2.2	12
10	Use of organic acids to improve fractionation of the black soldier fly larvae juice into lipid- and protein-enriched fractions. European Food Research and Technology, 2019, 245, 2257-2267.	3.3	14
11	Supercritical CO2 Extraction of Nannochloropsis sp.: A Lipidomic Study on the Influence of Pretreatment on Yield and Composition. Molecules, 2018, 23, 1854.	3.8	24
12	Using Silica Coated Nanoscale Zerovalent Particles for the Reduction of Chlorinated Ethylenes. Silicon, 2018, 10, 2593-2601.	3.3	5
13	Contrasting dual (C, Cl) isotope fractionation offers potential to distinguish reductive chloroethene transformation from breakdown by permanganate. Science of the Total Environment, 2017, 596-597, 169-177.	8.0	16
14	Effect of boron on reactivity and apparent corrosion rate of microscale zerovalent irons. Journal of Environmental Chemical Engineering, 2017, 5, 1892-1898.	6.7	5
15	Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment. Chemosphere, 2015, 134, 338-345.	8.2	24
16	Monitoring the Injection of Microscale Zerovalent Iron Particles for Groundwater Remediation by Means of Complex Electrical Conductivity Imaging. Environmental Science & Technology, 2015, 49, 5593-5600.	10.0	62
17	Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Water Research, 2014, 51, 64-72.	11.3	96
18	Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements, Journal of Hazardous Materials, 2014, 270, 18-26	12.4	59

LEEN BASTIAENS

#	Article	IF	CITATIONS
19	Quantitative and functional dynamics of Dehalococcoides spp. and its tceA and vcrA genes under TCE exposure. Biodegradation, 2014, 25, 493-504.	3.0	5
20	Guar gum coupled microscale ZVI for in situ treatment of CAHs: Continuous-flow column study. Journal of Hazardous Materials, 2014, 265, 20-29.	12.4	20
21	Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane. Journal of Contaminant Hydrology, 2014, 164, 88-99.	3.3	50
22	Impact of Chemical Oxidants on the Heavy Metals and the Microbial Population in Sediments. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	6
23	Microbial dechlorination activity during and after chemical oxidant treatment. Journal of Hazardous Materials, 2013, 262, 598-605.	12.4	10
24	Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons. Chemosphere, 2013, 93, 2040-2045.	8.2	17
25	Reactivity screening of microscale zerovalent irons and iron sulfides towards different CAHs under standardized experimental conditions. Journal of Hazardous Materials, 2013, 252-253, 204-212.	12.4	46
26	Reactivity recovery of guar gum coupled mZVI by means of enzymatic breakdown and rinsing. Journal of Contaminant Hydrology, 2012, 142-143, 1-10.	3.3	33
27	Design of a Multifunctional Permeable Reactive Barrier for the Treatment of Landfill Leachate Contamination: Laboratory Column Evaluation. Environmental Science & Technology, 2008, 42, 8890-8895.	10.0	50
28	Impact of Microbial Activities on the Mineralogy and Performance of Column-Scale Permeable Reactive Iron Barriers Operated under Two Different Redox Conditions. Environmental Science & Technology, 2007, 41, 5724-5730.	10.0	35
29	Dynamics of an Oligotrophic Bacterial Aquifer Community during Contact with a Groundwater Plume Contaminated with Benzene, Toluene, Ethylbenzene, and Xylenes: an In Situ Mesocosm Study. Applied and Environmental Microbiology, 2005, 71, 3815-3825.	3.1	84
30	Combined Removal of Chlorinated Ethenes and Heavy Metals by Zerovalent Iron in Batch and Continuous Flow Column Systems. Environmental Science & Technology, 2005, 39, 8460-8465.	10.0	66
31	Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron. Journal of Contaminant Hydrology, 2004, 74, 133-144.	3.3	45