Vincenzo Mainieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2896843/publications.pdf

Version: 2024-02-01

86 papers

12,363 citations

59 h-index 71685 **76** g-index

86 all docs

86 docs citations

86 times ranked 5602 citing authors

#	Article	IF	CITATIONS
1	The Stellar Mass versus Stellar Metallicity Relation of Star-forming Galaxies at $1.6~\rm{\hat{a}}\%$ z $\rm{\hat{a}}\%$ 3.0 and Implications for the Evolution of the $\rm{\hat{l}}\pm$ -enhancement. Astrophysical Journal, 2022, 925, 82.	4.5	18
2	Cosmological simulations predict that AGN preferentially live in gas-rich, star-forming galaxies despite effective feedback. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2936-2957.	4.4	31
3	The 2175 à Dust Feature in Star-forming Galaxies at 1.3 ≠z ≠1.8: The Dependence on Stellar Mass and Specific Star Formation Rate. Astrophysical Journal, 2021, 909, 213.	4.5	7
4	SUPER. Astronomy and Astrophysics, 2021, 654, L8.	5.1	18
5	SUPER. Astronomy and Astrophysics, 2021, 654, A90.	5.1	10
6	High molecular gas content and star formation rates in local galaxies that host quasars, outflows, and jets. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1560-1575.	4.4	49
7	SUPER. Astronomy and Astrophysics, 2020, 642, A147.	5.1	61
8	SUPER. Astronomy and Astrophysics, 2020, 644, A175.	5.1	25
9	Multi-phase outflows in Mkn 848 observed with SDSS-MaNGA integral field spectroscopy. Astronomy and Astrophysics, 2019, 623, A171.	5.1	23
10	The MAGNUM survey: different gas properties in the outflowing and disc components in nearby active galaxies with MUSE. Astronomy and Astrophysics, 2019, 622, A146.	5.1	96
11	The role of AGN feedback in the baryon cycle at $\langle i\rangle z\langle i\rangle$ $\hat{a}^1/4$ 2. Proceedings of the International Astronomical Union, 2019, 15, 51-56.	0.0	O
12	The largely unconstrained multiphase nature of outflows in AGN host galaxies. Nature Astronomy, 2018, 2, 176-178.	10.1	89
13	MAGNUM survey: A MUSE- <i>Chandra</i> resolved view on ionized outflows and photoionization in the Seyfert galaxy NGC1365. Astronomy and Astrophysics, 2018, 619, A74.	5.1	75
14	The SINS/zC-SINF Survey of zÂâ ¹ /4Â2 Galaxy Kinematics: SINFONI Adaptive Optics–assisted Data and Kiloparsec-scale Emission-line Properties < sup > â^— < /sup > . Astrophysical Journal, Supplement Series, 2018, 238, 21.	7.7	143
15	Rising MOONS: an update on the VLT's next multi-object spectrograph as it begins to grow. , 2018, , .		11
16	Instrumentation for ESO's Extremely Large Telescope., 2018,,.		4
17	ALMA reveals starburst-like interstellar medium conditions in a compact star-forming galaxy at $<$ i> $>$ 2 using [CI] and CO. Astronomy and Astrophysics, 2017, 602, A11.	5.1	62
18	X-Ray Spectral Analyses of AGNs from the 7Ms Chandra Deep Field-South Survey: The Distribution, Variability, and Evolutions of AGN Obscuration. Astrophysical Journal, Supplement Series, 2017, 232, 8.	7.7	52

#	Article	IF	CITATIONS
19	Progress along the E-ELT instrumentation roadmap. , 2016, , .		3
20	Operational metrics for the ESO Very Large Telescope: lessons learned and future steps. , 2016, , .		1
21	Radio-faint AGN: a tale of two populations. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1263-1279.	4.4	98
22	BLOWIN' IN THE WIND: BOTH "NEGATIVE―AND "POSITIVE―FEEDBACK IN AN OBSCURED HIGH- <i>z</i> QUASAR. Astrophysical Journal, 2015, 799, 82.	4.5	175
23	X-shooter reveals powerful outflows in z $\hat{a}^{-1/4}$ 1.5 X-ray selected obscured quasi-stellar objects. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2394-2417.	4.4	128
24	Tracing the cosmic growth of supermassive black holes to zÂâ^¼Â3 with Herschelâ~ Monthly Notices of the Royal Astronomical Society, 2014, 439, 2736-2754.	4.4	150
25	zCOSMOS 20k: satellite galaxies are the main drivers of environmental effects in the galaxy population at least to z â ⁻¹ /4 0.7. Monthly Notices of the Royal Astronomical Society, 2014, 438, 717-738.	4.4	78
26	The incidence of obscuration in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3550-3567.	4.4	245
27	THE SINS/zC-SINF SURVEY OF <i>z</i> â^1/4 2 GALAXY KINEMATICS: EVIDENCE FOR POWERFUL ACTIVE GALACTIC NUCLEUS-DRIVEN NUCLEAR OUTFLOWS IN MASSIVE STAR-FORMING GALAXIES. Astrophysical Journal, 2014, 787, 38.	4.5	155
28	THE DEPENDENCE OF GALACTIC OUTFLOWS ON THE PROPERTIES AND ORIENTATION OF zCOSMOS GALAXIES AT <i>z</i> \hat{a}^{-1} 4 1. Astrophysical Journal, 2014, 794, 130.	4.5	98
29	4MOST: 4-metre Multi-Object Spectroscopic Telescope. Proceedings of SPIE, 2014, , .	0.8	53
30	The Herschela~ PEP/HerMES luminosity function $\hat{a} \in \text{``I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies to z } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in \text{`I. Probing the evolution of PACS selected Galaxies } \hat{a} \in `I. Probin$	4.4	341
31	A quasar–galaxy mixing diagram: quasar spectral energy distribution shapes in the optical to near-infrared. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3104-3121.	4.4	23
32	The sub-mJy radio sky in the Extended Chandra Deep Field-South: source population. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3759-3771.	4.4	122
33	A statistical relation between the X-ray spectral index and Eddington ratio of active galactic nuclei in deep surveys. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2485-2496.	4.4	155
34	THE VERY LARGE ARRAY 1.4 GHz SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH: SECOND DATA RELEASE. Astrophysical Journal, Supplement Series, 2013, 205, 13.	7.7	103
35	X-Ray Groups of Galaxies at 0.5 1 in zCOSMOS: Increased AGN Activities in High Redshift Groups. Publication of the Astronomical Society of Japan, 2012, 64, .	2.5	15
36	THE <i>CHANDRA</i> COSMOS SURVEY. III. OPTICAL AND INFRARED IDENTIFICATION OF X-RAY POINT SOURCES. Astrophysical Journal, Supplement Series, 2012, 201, 30.	7.7	200

#	Article	IF	CITATIONS
37	The VIMOS upgrade programme. Proceedings of SPIE, 2012, , .	0.8	1
38	THE zCOSMOS 20k GROUP CATALOG. Astrophysical Journal, 2012, 753, 121.	4.5	88
39	Obscured quasars: the link between star-formation and black hole activity. Proceedings of the International Astronomical Union, 2012, 8, 181-183.	0.0	O
40	Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3103-3133.	4.4	202
41	Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the <i>XMM </i> -COSMOS survey. Monthly Notices of the Royal Astronomical Society, 2012, 425, 623-640.	4.4	315
42	THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2011, 740, 20.	4.5	125
43	THE RADIAL AND AZIMUTHAL PROFILES OF Mg II ABSORPTION AROUND 0.5 < <i>>z</i> < 0.9 zCOSMOS GALAXIES OF DIFFERENT COLORS, MASSES, AND ENVIRONMENTS. Astrophysical Journal, 2011, 743, 10.	4.5	245
44	THE IMPACT OF GALAXY INTERACTIONS ON ACTIVE GALACTIC NUCLEUS ACTIVITY IN zCOSMOS. Astrophysical Journal, 2011, 743, 2.	4.5	148
45	THE zCOSMOS-SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS. Astrophysical Journal, 2011, 743, 86.	4.5	86
46	ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES. Astrophysical Journal, 2011, 733, 60.	4.5	116
47	DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING <i>XMM </i> AND <i>CHANDRA </i> FOR ACTIVE GALACTIC NUCLEUS USING <i>XMM </i> AND <i>AND <i>AND <AND AND <AND AND </i></i>	4.5	205
48	The LABOCA survey of the Extended Chandra Deep Field-South - radio and mid-infrared counterparts to submillimetre galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2314-2338.	4.4	81
49	THE <i>XMM-NEWTON</i> WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2010, 716, 348-369.	4.5	266
50	A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?. Astrophysical Journal, 2010, 717, 209-222.	4.5	101
51	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION. Astrophysical Journal, 2010, 721, 193-221.	4.5	1,485
52	THE LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH: TWO MODES OF STAR FORMATION IN ACTIVE GALACTIC NUCLEUS HOSTS?. Astrophysical Journal, 2010, 712, 1287-1301.	4.5	143
53	AN X-RAY-SELECTED GALAXY CLUSTER IN THE LOCKMAN HOLE AT REDSHIFT 1.753. Astrophysical Journal, 2010, 725, 615-624.	4.5	31
54	IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES. Astrophysical Journal, Supplement Series, 2010, 187, 560-580.	7.7	133

#	Article	IF	Citations
55	HIGH-REDSHIFT QUASARS IN THE COSMOS SURVEY: THE SPACE DENSITY OF <i>z < /i> > 3 X-RAY SELECTED QSOs. Astrophysical Journal, 2009, 693, 8-22.</i>	4.5	88
56	THE ENVIRONMENTS OF ACTIVE GALACTIC NUCLEI WITHIN THE zCOSMOS DENSITY FIELD. Astrophysical Journal, 2009, 695, 171-182.	4.5	89
57	ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2009, 696, 396-410.	4.5	197
58	AN OPTICAL GROUP CATALOG TO <i>z</i> = 1 FROM THE zCOSMOS 10 k SAMPLE. Astrophysical Journal, 2009, 697, 1842-1860.	4.5	103
59	THE VERY LARGE ARRAY SURVEY OF THE <i>CHANDRA < /i> DEEP FIELD SOUTH. IV. SOURCE POPULATION. Astrophysical Journal, 2009, 694, 235-246.</i>	4.5	81
60	THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE. Astrophysical Journal, Supplement Series, 2009, 184, 218-229.	7.7	481
61	CHASING HIGHLY OBSCURED QSOs IN THE COSMOS FIELD. Astrophysical Journal, 2009, 693, 447-462.	4.5	191
62	X-Ray Selected Type 2 QSOs and Their Host Galaxies. Proceedings of the International Astronomical Union, 2009, 5, 80-84.	0.0	0
63	Submillijansky Radio-Quiet and Radio-Loud AGN in the <i>Chandra</i> Deep Field South. Proceedings of the International Astronomical Union, 2009, 5, 130-130.	0.0	0
64	THE <i>CHANDRA</i> COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2009, 184, 158-171.	7.7	361
65	On the Way to an E-ELT Instrumentation Plan. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 235-242.	0.3	0
66	Precision photometric redshift calibration for galaxy–galaxy weak lensing. Monthly Notices of the Royal Astronomical Society, 2008, 386, 781-806.	4.4	121
67	Tracing the Massâ€Dependent Star Formation History of Lateâ€Type Galaxies Using Xâ€Ray Emission: Results from the Chandra Deep Fields. Astrophysical Journal, 2008, 681, 1163-1182.	4.5	71
68	The VLA 1.4 GHz Survey of the Extended Chandra Deep Field–South: First Data Release. Astrophysical Journal, Supplement Series, 2008, 179, 114-123.	7.7	107
69	The Evolution of AGN Host Galaxies: From Blue to Red and the Influence of Largeâ€Scale Structures. Astrophysical Journal, 2008, 675, 1025-1040.	4.5	136
70	The VLA Survey of the Chandra Deep Field–South. I. Overview and the Radio Data. Astrophysical Journal, Supplement Series, 2008, 179, 71-94.	7.7	82
71	The <i>XMMâ€Newton</i> Wideâ€Field Survey in the COSMOS Field. I. Survey Description. Astrophysical Journal, Supplement Series, 2007, 172, 29-37.	7.7	263
72	zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < <i>z</i> < 3 in the COSMOS Field. Astrophysical Journal, Supplement Series, 2007, 172, 70-85.	7.7	775

#	Article	IF	CITATIONS
73	The <i>XMMâ€Newton</i> Wideâ€Field Survey in the COSMOS Field. II. Xâ€Ray Data and the log <i>N</i> âd <i>S</i> Relations. Astrophysical Journal, Supplement Series, 2007, 172, 341-352.	€log 7.ga	136
74	The Xâ€Ray Evolution of Earlyâ€Type Galaxies in the Extended Chandra Deep Field–South. Astrophysical Journal, 2007, 657, 681-699.	4.5	59
75	Photometric Redshifts of Galaxies in COSMOS. Astrophysical Journal, Supplement Series, 2007, 172, 117-131.	7.7	127
76	The <i>XMMâ€Newton</i> Wideâ€Field Survey in the COSMOS Field: Statistical Properties of Clusters of Galaxies. Astrophysical Journal, Supplement Series, 2007, 172, 182-195.	7.7	234
77	Evolution in the Iron Abundance of the ICM. Progress of Theoretical Physics Supplement, 2007, 169, 49-52.	0.1	O
78	The <i>XMM</i> ― <i>Newton</i> Wideâ€Field Survey in the COSMOS Field. III. Optical Identification and Multiwavelength Properties of a Large Sample of Xâ€Ray–Selected Sources. Astrophysical Journal, Supplement Series, 2007, 172, 353-367.	7.7	147
79	Midâ€InfraredSpitzerSpectra of Xâ€Ray–Selected Type 2 QSOs: QSO2s Are Not Ultraluminous Infrared Galaxies. Astrophysical Journal, 2006, 642, 81-86.	4.5	78
80	The Extended Chandra Deep Field–South Survey: Chandra Pointâ€Source Catalogs. Astrophysical Journal, Supplement Series, 2005, 161, 21-40.	7.7	244
81	Searching Faint and Extended Sources in the X-ray Universe. AIP Conference Proceedings, 2005, , .	0.4	1
82	The Chandra Deep Field–South: Optical Spectroscopy. I Astrophysical Journal, Supplement Series, 2004, 155, 271-349.	7.7	479
83	Iron Abundance in the Intracluster Medium at High Redshift. Astrophysical Journal, 2003, 593, 705-720.	4.5	98
84	Tracing the Largeâ€Scale Structure in theChandraDeep Field South. Astrophysical Journal, 2003, 592, 721-727.	4.5	136
85	The Chandra Deep Field–South: The 1 Million Second Exposure. Astrophysical Journal, 2002, 566, 667-674.	4.5	289
86	Chandra Deep Field South: The 1 Ms Catalog. Astrophysical Journal, Supplement Series, 2002, 139, 369-410.	7.7	501