Laurent Gillet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2896498/publications.pdf

Version: 2024-02-01

201385 205818 2,762 88 27 48 h-index citations g-index papers 92 92 92 3826 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Repetitive salivaâ€based mass screening as a tool for controlling SARSâ€CoVâ€2 transmission in nursing homes. Transboundary and Emerging Diseases, 2022, 69, .	1.3	11
2	Reliable and Scalable SARS-CoV-2 qPCR Testing at a High Sample Throughput: Lessons Learned from the Belgian Initiative. Life, 2022, 12, 159.	1.1	2
3	University population-based prospective cohort study of SARS-CoV-2 infection and immunity (SARSSURV-ULià ge): a study protocol. BMJ Open, 2022, 12, e055721.	0.8	6
4	A 2-month field cohort study of SARS-CoV-2 in saliva of BNT162b2 vaccinated nursing home workers. Communications Medicine, 2022, 2, .	1.9	12
5	Decision-based interactive model to determine re-opening conditions of a large university campus in Belgium during the first COVID-19 wave. Archives of Public Health, 2022, 80, 71.	1.0	3
6	Acceptability of Community Saliva Testing in Controlling the COVID-19 Pandemic: Lessons Learned from Two Case Studies in Nursing Homes and Schools. Patient Preference and Adherence, 2022, Volume 16, 625-631.	0.8	1
7	Nationwide Harmonization Effort for Semi-Quantitative Reporting of SARS-CoV-2 PCR Test Results in Belgium. Viruses, 2022, 14, 1294.	1.5	13
8	Factors influencing the adoption and participation rate of nursing homes staff in a saliva testing screening programme for COVID-19. PLoS ONE, 2022, 17, e0270551.	1.1	1
9	Ly6C ^{hi} monocytes balance regulatory and cytotoxic CD4 T cell responses to control virus-induced immunopathology. Science Immunology, 2022, 7, .	5.6	7
10	The First Random Observational Survey of Barrier Gestures against COVID-19. International Journal of Environmental Research and Public Health, 2021, 18, 9972.	1.2	4
11	Single-Virus Force Spectroscopy Discriminates the Intrinsic Role of Two Viral Glycoproteins upon Cell Surface Attachment. Nano Letters, 2021, 21, 847-853.	4.5	8
12	In-Depth Longitudinal Comparison of Clinical Specimens to Detect SARS-CoV-2. Pathogens, 2021, 10, 1362.	1.2	9
13	IL-20 Cytokines Are Involved in Epithelial Lesions Associated with Virus-Induced COPD Exacerbation in Mice. Biomedicines, 2021, 9, 1838.	1.4	4
14	A gammaherpesvirus licenses CD8 T cells to protect the host from pneumovirus-induced immunopathologies. Mucosal Immunology, 2020, 13, 799-813.	2.7	4
15	Initial Step of Virus Entry: Virion Binding to Cell-Surface Glycans. Annual Review of Virology, 2020, 7, 143-165.	3.0	82
16	IFN-λ Decreases Murid Herpesvirus-4 Infection of the Olfactory Epithelium but Fails to Prevent Virus Reactivation in the Vaginal Mucosa. Viruses, 2019, 11, 757.	1.5	10
17	Oral Vaccination with Replication-Competent Adenovirus in Mice Reveals Dissemination of the Viral Vaccine beyond the Gastrointestinal Tract. Journal of Virology, 2019, 93, .	1.5	12
18	Recruitment of hepatic macrophages from monocytes is independent of ILâ€4Rα but is associated with ablation of resident macrophages in schistosomiasis. European Journal of Immunology, 2019, 49, 1067-1081.	1.6	16

#	Article	IF	CITATIONS
19	Th1 and Th17 Immune Responses Act Complementarily to Optimally Control Superficial Dermatophytosis. Journal of Investigative Dermatology, 2019, 139, 626-637.	0.3	33
20	Helminth-induced IL-4 expands bystander memory CD8+ T cells for early control of viral infection. Nature Communications, 2018, 9, 4516.	5.8	73
21	Antiviral effect of the nucleoside analogue cidofovir in the context of sexual transmission of a gammaherpesvirus in mice. Journal of Antimicrobial Chemotherapy, 2018, 73, 2095-2103.	1.3	2
22	Multivalent binding of herpesvirus to living cells is tightly regulated during infection. Science Advances, 2018, 4, eaat1273.	4.7	48
23	The Major Envelope Glycoprotein of Murid Herpesvirus 4 Promotes Sexual Transmission. Journal of Virology, 2017, 91, .	1.5	10
24	Exposure to Bacterial CpG DNA Protects from Airway Allergic Inflammation by Expanding Regulatory Lung Interstitial Macrophages. Immunity, 2017, 46, 457-473.	6.6	171
25	A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. Nature Immunology, 2017, 18, 1310-1320.	7.0	164
26	Proteomic and Functional Analyses of the Virion Transmembrane Proteome of Cyprinid Herpesvirus 3. Journal of Virology, 2017, 91, .	1.5	24
27	Cryopreservation of chicken primordial germ cells by vitrification and slow freezing: A comparative study. Theriogenology, 2017, 88, 197-206.	0.9	10
28	Structural Proteomics of Herpesviruses. Viruses, 2016, 8, 50.	1.5	18
29	No Evidence of Herpesvirus Infection in West Highland White Terriers With Canine Idiopathic Pulmonary Fibrosis. Veterinary Pathology, 2016, 53, 1210-1212.	0.8	6
30	Deletion of Murid Herpesvirus 4 ORF63 Affects the Trafficking of Incoming Capsids toward the Nucleus. Journal of Virology, 2016, 90, 2455-2472.	1.5	11
31	Bovine Herpesvirus 4 Modulates Its \hat{i}^2 -1,6- <i>N</i> -Acetylglucosaminyltransferase Activity through Alternative Splicing. Journal of Virology, 2016, 90, 2039-2051.	1.5	0
32	Long term-cultured and cryopreserved primordial germ cells from various chicken breeds retain high proliferative potential and gonadal colonisation competency. Reproduction, Fertility and Development, 2016, 28, 628.	0.1	20
33	Lung-resident eosinophils represent a distinct regulatory eosinophil subset. Journal of Clinical Investigation, 2016, 126, 3279-3295.	3.9	373
34	The $\hat{l}\pm 2,3$ -Sialyltransferase Encoded by Myxoma Virus Is a Virulence Factor that Contributes to Immunosuppression. PLoS ONE, 2015, 10, e0118806.	1.1	6
35	The Interferon-Inducible Mouse Apolipoprotein L9 and Prohibitins Cooperate to Restrict Theiler's Virus Replication. PLoS ONE, 2015, 10, e0133190.	1.1	43
36	Host entry by gamma-herpesviruses â€" lessons from animal viruses?. Current Opinion in Virology, 2015, 15, 34-40.	2.6	22

#	Article	IF	CITATIONS
37	Glycoprotein B Cleavage Is Important for Murid Herpesvirus 4 To Infect Myeloid Cells. Journal of Virology, 2013, 87, 10828-10842.	1.5	9
38	Illumination of Murine Gammaherpesvirus-68 Cycle Reveals a Sexual Transmission Route from Females to Males in Laboratory Mice. PLoS Pathogens, 2013, 9, e1003292.	2.1	40
39	A Gammaherpesvirus Uses Alternative Splicing to Regulate Its Tropism and Its Sensitivity to Neutralization. PLoS Pathogens, 2013, 9, e1003753.	2.1	20
40	Proteomic Characterization of Murid Herpesvirus 4 Extracellular Virions. PLoS ONE, 2013, 8, e83842.	1.1	22
41	Myeloid Infection Links Epithelial and B Cell Tropisms of Murid Herpesvirus-4. PLoS Pathogens, 2012, 8, e1002935.	2.1	48
42	Virion endocytosis is a major target for murid herpesvirus-4 neutralization. Journal of General Virology, 2012, 93, 1316-1327.	1.3	9
43	Proteomic Characterization of Bovine Herpesvirus 4 Extracellular Virions. Journal of Virology, 2012, 86, 11567-11580.	1.5	21
44	Bovine Herpesvirus Type 4 Glycoprotein L Is Nonessential for Infectivity but Triggers Virion Endocytosis during Entry. Journal of Virology, 2012, 86, 2653-2664.	1.5	19
45	Feeding Cyprinus carpio with infectious materials mediates cyprinid herpesvirus 3 entry through infection of pharyngeal periodontal mucosa. Veterinary Research, 2012, 43, 6.	1.1	31
46	<i>Ex Vivo</i> Bioluminescence Detection of Alcelaphine Herpesvirus 1 Infection during Malignant Catarrhal Fever. Journal of Virology, 2011, 85, 6941-6954.	1.5	22
47	Antibody production by injection of living cells expressing non self antigens as cell surface type II transmembrane fusion protein. Journal of Immunological Methods, 2011, 367, 70-77.	0.6	3
48	Bovine herpesvirus 4 immediate early 2 (Rta) gene is an essential gene and is duplicated in bovine herpesvirus 4 isolate U. Veterinary Microbiology, 2011, 148, 219-231.	0.8	9
49	Sequencing of bovine herpesvirus 4 v.test strain reveals important genome features. Virology Journal, 2011, 8, 406.	1.4	16
50	Alternative attachment factors and internalization pathways for GIII.2 bovine noroviruses. Journal of General Virology, 2011, 92, 1398-1409.	1.3	7
51	The Bovine Herpesvirus 4 Bo10 Gene Encodes a Nonessential Viral Envelope Protein That Regulates Viral Tropism through both Positive and Negative Effects. Journal of Virology, 2011, 85, 1011-1024.	1.5	24
52	Antibody Evasion by a Gammaherpesvirus O-Glycan Shield. PLoS Pathogens, 2011, 7, e1002387.	2.1	40
53	A mechanistic basis for potent, glycoprotein B-directed gammaherpesvirus neutralization. Journal of General Virology, 2011, 92, 2020-2033.	1.3	11
54	Bovine herpesvirus 4 ORF73 is dispensable for virus growth in vitro, but is essential for virus persistence in vivo. Journal of General Virology, 2010, 91, 2574-2584.	1.3	5

#	Article	IF	Citations
55	Comparative study of murid gammaherpesvirus 4 infection in mice and in a natural host, bank voles. Journal of General Virology, 2010, 91, 2553-2563.	1.3	27
56	The Major Portal of Entry of Koi Herpesvirus in <i>Cyprinus carpio</i> Is the Skin. Journal of Virology, 2009, 83, 2819-2830.	1.5	126
57	Anchoring tick salivary anti-complement proteins IRAC I and IRAC II to membrane increases their immunogenicity. Veterinary Research, 2009, 40, 51.	1.1	14
58	In vivo importance of heparan sulfate-binding glycoproteins for murid herpesvirus-4 infection. Journal of General Virology, 2009, 90, 602-613.	1.3	27
59	In vivo imaging of murid herpesvirus-4 infection. Journal of General Virology, 2009, 90, 21-32.	1.3	71
60	Glycoprotein L sets the neutralization profile of murid herpesvirus 4. Journal of General Virology, 2009, 90, 1202-1214.	1.3	11
61	The Murid Herpesvirus-4 gH/gL Binds to Glycosaminoglycans. PLoS ONE, 2008, 3, e1669.	1.1	28
62	Glycoprotein B switches conformation during murid herpesvirus 4 entry. Journal of General Virology, 2008, 89, 1352-1363.	1.3	28
63	The Murid Herpesvirus-4 gL Regulates an Entry-Associated Conformation Change in gH. PLoS ONE, 2008, 3, e2811.	1.1	21
64	Glycoprotein L Disruption Reveals Two Functional Forms of the Murine Gammaherpesvirus 68 Glycoprotein H. Journal of Virology, 2007, 81, 280-291.	1.5	43
65	De novo C16- and C24-ceramide generation contributes to spontaneous neutrophil apoptosis. Journal of Leukocyte Biology, 2007, 81, 1477-1486.	1.5	74
66	Evidence for a Multiprotein Gamma-2 Herpesvirus Entry Complex. Journal of Virology, 2007, 81, 13082-13091.	1.5	23
67	Glycosaminoglycan Interactions in Murine Gammaherpesvirus-68 Infection. PLoS ONE, 2007, 2, e347.	1.1	50
68	STAT5 Is an Ambivalent Regulator of Neutrophil Homeostasis. PLoS ONE, 2007, 2, e727.	1.1	22
69	Post-Exposure Vaccination Improves Gammaherpesvirus Neutralization. PLoS ONE, 2007, 2, e899.	1.1	18
70	The paralogous salivary anti-complement proteins IRAC I and IRAC II encoded by Ixodes ricinus ticks have broad and complementary inhibitory activities against the complement of different host species. Microbes and Infection, 2007, 9, 247-250.	1.0	53
71	Natural antibody–complement dependent neutralization of bovine herpesvirus 4 by human serum. Microbes and Infection, 2007, 9, 1530-1537.	1.0	3
72	Establishment of a Bovine Herpesvirus 4 based vector expressing a secreted form of the Bovine Viral Diarrhoea Virus structural glycoprotein E2 for immunization purposes. BMC Biotechnology, 2007, 7, 68.	1.7	36

#	Article	lF	CITATIONS
73	Antibody evasion by the N terminus of murid herpesvirus-4 glycoprotein B. EMBO Journal, 2007, 26, 5131-5142.	3.5	25
74	Generation of a transposon insertion mutant library for bovine herpesvirus 4 cloned as a bacterial artificial chromosome by in vitro MuA based DNA transposition system. Journal of Virological Methods, 2007, 141, 63-70.	1.0	10
75	lgG Fc Receptors Provide an Alternative Infection Route for Murine Gamma-Herpesvirus-68. PLoS ONE, 2007, 2, e560.	1.1	42
76	The Murine Gammaherpesvirus-68 gp150 Acts as an Immunogenic Decoy to Limit Virion Neutralization. PLoS ONE, 2007, 2, e705.	1.1	39
77	Felid herpesvirus 1 glycoprotein G is a structural protein that mediates the binding of chemokines on the viral envelope. Microbes and Infection, 2006, 8, 2657-2667.	1.0	23
78	Evolution of Bovine herpesvirus 4: recombination and transmission between African buffalo and cattle. Journal of General Virology, 2006, 87, 1509-1519.	1.3	30
79	Murine gammaherpesvirus-68 glycoprotein H–glycoprotein L complex is a major target for neutralizing monoclonal antibodies. Journal of General Virology, 2006, 87, 1465-1475.	1.3	43
80	Recombinant Bovine Herpesvirus 4 (BoHV-4) Expressing Glycoprotein D of BoHV-1 Is Immunogenic and Elicits Serum-Neutralizing Antibodies against BoHV-1 in a Rabbit Model. Vaccine Journal, 2006, 13, 1246-1254.	3.2	21
81	Murine gammaherpesvirus-68 glycoprotein B presents a difficult neutralization target to monoclonal antibodies derived from infected mice. Journal of General Virology, 2006, 87, 3515-3527.	1.3	34
82	Pro-inflammatory properties for thiazolidinediones. Biochemical Pharmacology, 2005, 69, 255-265.	2.0	23
83	Antibodies against bovine herpesvirus 4 are highly prevalent in wild African buffaloes throughout eastern and southern Africa. Veterinary Microbiology, 2005, 110, 209-220.	0.8	19
84	Bovine Herpesvirus 4 Induces Apoptosis of Human Carcinoma Cell Lines In vitro and In vivo. Cancer Research, 2005, 65, 9463-9472.	0.4	28
85	Gynogenesis induction and sex determination in the Eurasian perch, Perca fluviatilis. Aquaculture, 2005, 243, 411-415.	1.7	18
86	Genetic immunisation of cattle against Bovine herpesvirus 1: glycoprotein gD confers higher protection than glycoprotein gC or tegument protein VP8. Veterinary Research, 2005, 36, 529-544.	1.1	19
87	The core $2\hat{l}^2$ -1,6-N-acetylglucosaminyltransferase-M encoded by bovine herpesvirus 4 is not essential for virus replication despite contributing to post-translational modifications of structural proteins. Journal of General Virology, 2004, 85, 355-367.	1.3	17
88	Glycosyltransferases encoded by viruses. Journal of General Virology, 2004, 85, 2741-2754.	1.3	97