
Izabela Sobczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2896450/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative properties of niobium-containing mesoporous silica catalysts. Catalysis Today, 2001, 70, 169-181.	4.4	100
2	Search for reactive intermediates in catalytic oxidation with hydrogen peroxide over amorphous niobium(V) and tantalum(V) oxides. Applied Catalysis B: Environmental, 2015, 164, 288-296.	20.2	90
3	The role of niobium component in heterogeneous catalysts. Catalysis Today, 2017, 285, 211-225.	4.4	83
4	Glycerol oxidation on gold catalysts supported on group five metal oxides—A comparative study with other metal oxides and carbon based catalysts. Catalysis Today, 2010, 158, 121-129.	4.4	78
5	Nb-containing mesoporous molecular sieves — a possible application in the catalytic processes. Microporous and Mesoporous Materials, 2000, 35-36, 195-207.	4.4	68
6	Catalytic performance of niobium species in crystalline and amorphous solids—Gas and liquid phase oxidation. Applied Catalysis A: General, 2011, 391, 194-204.	4.3	62
7	Catalytic properties of alkali metal-modified oxide supports for the Knoevenagel condensation: Kinetic aspects. Catalysis Today, 2009, 142, 278-282.	4.4	61
8	The ability of Nb2O5 and Ta2O5 to generate active oxygen in contact with hydrogen peroxide. Catalysis Communications, 2013, 37, 85-91.	3.3	56
9	Template synthesis and characterisation of MCM-41 mesoporous molecular sieves containing various transition metal elements—TME (Cu, Fe, Nb, V, Mo). Journal of Physics and Chemistry of Solids, 2004, 65, 571-581.	4.0	54
10	Cu state and behaviour in MCM-41 mesoporous molecular sieves modified with copper during the synthesis––comparison with copper exchanged materials. Microporous and Mesoporous Materials, 2004, 74, 23-36.	4.4	54
11	Bimetallic AgCu/SBA-15 System: The Effect of Metal Loading and Treatment of Catalyst on Surface Properties. Journal of Physical Chemistry C, 2014, 118, 12796-12810.	3.1	49
12	Au–Cu on Nb2O5 and Nb/MCF supports – Surface properties and catalytic activity in glycerol and methanol oxidation. Catalysis Today, 2015, 254, 72-82.	4.4	43
13	Characterization of alumina- and niobia-supported gold catalysts used for oxidation of glycerol. Applied Catalysis A: General, 2010, 384, 70-77.	4.3	42
14	Amino-grafted metallosilicate MCM-41 materials as basic catalysts for eco-friendly processes. Catalysis Today, 2010, 152, 119-125.	4.4	42
15	Preparation and characterisation of Pt containing NbMCM-41 mesoporous molecular sieves addressed to catalytic NO reduction by hydrocarbons. Microporous and Mesoporous Materials, 2005, 78, 103-116.	4.4	41
16	Zeolite MCM-22 Modified with Au and Cu for Catalytic Total Oxidation of Methanol and Carbon Monoxide. Journal of Physical Chemistry C, 2013, 117, 2147-2159.	3.1	39
17	The role of chlorine in the generation of catalytic active species located in Au-containing MCM-41 materials. Journal of Catalysis, 2007, 245, 259-266.	6.2	37
18	Physicochemical Properties and Catalytic Activity of Cu–NbZSM-5—A Comparative Study with Cu–AlZSM-5. Journal of Catalysis, 2002, 207, 101-112.	6.2	32

IZABELA SOBCZAK

#	Article	IF	CITATIONS
19	Variability of surface components in gold catalysts – The role of hydroxyls and state of gold on activity and selectivity of Au-Nb2O5 and Au-ZnNb2O6 in methanol oxidation. Journal of Catalysis, 2017, 354, 100-112.	6.2	32
20	Modification of acid–base properties of alkali metals containing catalysts by the application of various supports. Applied Catalysis A: General, 2006, 303, 121-130.	4.3	31
21	Gold Grafted to Mesoporous Silica Surfaces, a Molecular Picture. Journal of Physical Chemistry C, 2009, 113, 13855-13859.	3.1	31
22	Amino-grafted mesoporous materials based on MCF structure involved in the quinoline synthesis. Mechanistic insights. Journal of Molecular Catalysis A, 2013, 378, 38-46.	4.8	31
23	The effect of the preparation procedure on the morphology, texture and photocatalytic properties of ZnO. Materials Research Bulletin, 2017, 85, 35-46.	5.2	30
24	Gold, vanadium and niobium containing MCM-41 materials—Catalytic properties in methanol oxidation. Catalysis Today, 2008, 139, 188-195.	4.4	28
25	The Formation of Gold Clusters Supported on Mesoporous Silica Material Surfaces: A Molecular Picture. Journal of Physical Chemistry C, 2010, 114, 9002-9007.	3.1	27
26	Photochromism and hydrolysis of aromatic Schiff base N,N′-bis(salicylidene)-p-phenylenediamine (BSP) studied in heterogeneous environments. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 63, 211-218.	1.6	26
27	Organosilanes affecting the structure and formation of mesoporous cellular foams. Microporous and Mesoporous Materials, 2012, 155, 143-152.	4.4	26
28	The possible use of alkali metal modified NbMCM-41 in the synthesis of 1,4-dihydropyridine intermediates. Catalysis Today, 2009, 142, 303-307.	4.4	25
29	Au containing mesostructured cellular foams NbMCF and ZrMCF in selective oxidation of methanol to formaldehyde. Journal of Molecular Catalysis A, 2014, 390, 114-124.	4.8	25
30	The effect of copper and silver on the properties of Au-ZnO catalyst and its activity in glycerol oxidation. Applied Surface Science, 2018, 444, 197-207.	6.1	25
31	Sonocatalysis in solvent-free conditions: An efficient eco-friendly methodology to prepare N-alkyl imidazoles using amino-grafted NbMCM-41. Catalysis Today, 2009, 142, 283-287.	4.4	24
32	The effect of AuAg–MCF and AuAg–NbMCF catalysts pretreatment on the gold–silver alloy formation and the catalytic behavior in selective methanol oxidation with oxygen. Journal of Molecular Catalysis A, 2015, 409, 137-148.	4.8	22
33	Gold based on SBA-15 supports – Promising catalysts in base-free glucose oxidation. Chemical Engineering Journal, 2021, 413, 127548.	12.7	22
34	Theoretical and experimental insight into zinc loading on mesoporous silica. Microporous and Mesoporous Materials, 2018, 256, 199-205.	4.4	20
35	NO and C3H6 adsorption and coadsorption in oxygen excess—A comparative study of different type zeolites modified with gold. Catalysis Today, 2011, 176, 393-398.	4.4	18
36	The role of niobium in MCM-41 supported with Pt and Au—A comparative study of physicochemical and catalytic properties. Catalysis Today, 2009, 142, 258-266.	4.4	17

IZABELA SOBCZAK

#	Article	IF	CITATIONS
37	Mesoporous niobiosilicate NbMCF modified with alkali metals in the synthesis of chromene derivatives. Catalysis Today, 2016, 277, 133-142.	4.4	17
38	CuxCryOz mixed oxide as a promising support for gold – The effect of Au loading method on the effectiveness in oxidation reactions. Catalysis Today, 2012, 187, 48-55.	4.4	16
39	Spectroscopic surface characterization of MoVNbTe nanostructured catalysts for the partial oxidation of propane. Catalysis Today, 2012, 187, 195-200.	4.4	16
40	Isomerization of Eugenol Under Ultrasound Activation Catalyzed by Alkali Modified Mesoporous NbMCM-41. Topics in Catalysis, 2010, 53, 179-186.	2.8	15
41	Surface properties of platinum catalysts based on various nanoporous matrices. Microporous and Mesoporous Materials, 2007, 99, 345-354.	4.4	14
42	The effect of zinc and copper in gold catalysts supported on MCF cellular foams on surface properties and catalytic activity in methanol oxidation. Microporous and Mesoporous Materials, 2016, 232, 97-108.	4.4	14
43	Efficient isomerization of safrole by amino-grafted MCM-41 materials as basic catalysts. Catalysis Today, 2012, 179, 159-163.	4.4	13
44	Development of multifunctional gold, copper, zinc, niobium containing MCF catalysts – Surface properties and activity in methanol oxidation. Microporous and Mesoporous Materials, 2017, 243, 339-350.	4.4	13
45	Effect of hydrogen sulphide on nitric oxide adsorption and decomposition on Cu-containing molecular sieves. Applied Catalysis B: Environmental, 2000, 28, 197-207.	20.2	12
46	NO adsorption combined with FTIR spectroscopy as a useful tool for characterization of niobium species in crystalline and amorphous molecular sieves. Catalysis Today, 2012, 192, 149-153.	4.4	12
47	WGS and reforming properties of NbMCM-41 materials. Catalysis Today, 2006, 114, 281-286.	4.4	11
48	FTIR study of NO, C3H6 and O2 adsorption and interaction on gold modified MCM-41 materials. Catalysis Today, 2008, 137, 203-208.	4.4	11
49	Tantalum vs Niobium MCF nanocatalysts in the green synthesis of chromene derivatives. Catalysis Today, 2019, 325, 47-52.	4.4	11
50	The role of gold dopant in AP-Nb/MCF and AP-MCF on the Knoevenagel condensation of ethyl cyanoacetate with benzaldehyde and 2,4-dichlorobenzaldehyde. Catalysis Today, 2019, 325, 81-88.	4.4	10
51	Gold-containing Beta zeolite in base-free glucose oxidation – The role of Au deposition procedure and zeolite dopants. Catalysis Today, 2021, 382, 48-60.	4.4	10
52	Pt and Nb species on various supports: An alternative to current materials for NOx removal. Catalysis Today, 2007, 119, 78-82.	4.4	9
53	Impact of Support (MCF, ZrO2, ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas. Materials, 2019, 12, 3792.	2.9	9
54	Methanol oxidation on AuAg-Zn/MCM-36 – The effect of catalyst components and pretreatment. Catalysis Today, 2020, 354, 123-132.	4.4	9

IZABELA SOBCZAK

#	Article	IF	CITATIONS
55	Novel AuNbMCM-41 catalyst for methanol oxidation. Studies in Surface Science and Catalysis, 2007, 170, 1300-1306.	1.5	8
56	The effect of the calcium dopant on the activity and selectivity of gold catalysts supported on SBA-15 and Nb-containing SBA-15 in methanol oxidation. Catalysis Science and Technology, 2021, 11, 2242-2260.	4.1	8
57	The influence of Zr presence in short channel SBA-15 on state and activity of metallic modifiers (Ag,) Tj ETQq1 1	0.784314 4.4	rgBT /Overic
58	The effect of support properties on n-octanol oxidation performed on gold – silver catalysts supported on MgO, ZnO and Nb2O5. Molecular Catalysis, 2020, 482, 110674.	2.0	7
59	Modification of Gold Zeolitic Supports for Catalytic Oxidation of Glucose to Gluconic Acid. Materials, 2021, 14, 5250.	2.9	7
60	The role of pillaring in MCM-22 on the dispersion of noble metals and catalytic activity. Materials Research Bulletin, 2016, 76, 169-178.	5.2	6
61	Bimetallic gold-silver catalysts based on ZnO and Zn/SBA-15 – The effect of various treatments on surface and catalytic properties. Catalysis Today, 2020, 356, 110-121.	4.4	6
62	Gold and gold–iron modified zeolites—Towards the adsorptive deodourisation. Journal of Hazardous Materials, 2010, 179, 444-452.	12.4	5
63	Application of ToF-SIMS to the study of surfactant removal from AuNbMCM-41 and AuMCM-41 materials. International Journal of Mass Spectrometry, 2010, 289, 138-143.	1.5	5
64	Gold-vanadium-niobium catalysts in environmental protection—adsorption and interaction of NO, C3H6 andÂO2—FT-IR study. Adsorption, 2009, 15, 145-155.	3.0	4
65	Size of Au-Nanoparticles Supported on Mesostructural Cellular Foams Studied by the Pair Distribution Function Technique. Crystal Growth and Design, 2016, 16, 5985-5993.	3.0	4
66	Structure and Reactivity of Zeolites Containing Group Five Elements (V, Nb, Ta). Structure and Bonding, 2017, , 179-249.	1.0	4
67	Gold-copper catalysts supported on SBA-15 with long and short channels – Characterization and the use in propene oxidation. Catalysis Today, 2020, 356, 155-164.	4.4	3
68	Microwave-Assisted Base-Free Oxidation of Glucose with H2O2 on Gold- and Manganese-Containing SBA-15—Insight into Factors Affecting the Reaction Pathway. International Journal of Molecular Sciences, 2022, 23, 4639.	4.1	3
69	The effect of alkali metal on the surface properties of potassium doped Au-Beta zeolites. Materials Research Bulletin, 2013, 48, 795-801.	5.2	2
70	Application of modified zeolites and mesoporous materials for deodorization. Studies in Surface Science and Catalysis, 2008, , 555-560.	1.5	1
71	Influence of preparation conditions on properties of gold loaded on the supports containing group five elements. Studies in Surface Science and Catalysis, 2010, 175, 333-337.	1.5	0