Gregorio Asensio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/28962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver-Catalyzed C-C Bond Formation Between Methane and Ethyl Diazoacetate in Supercritical CO ₂ . Science, 2011, 332, 835-838.	12.6	228
2	Gold(I)-Catalyzed Intermolecular Oxyarylation of Alkynes: Unexpected Regiochemistry in the Alkylation of Arenes. Organic Letters, 2009, 11, 4906-4909.	4.6	148
3	Association between Pterostilbene and Quercetin Inhibits Metastatic Activity of B16 Melanoma. Neoplasia, 2005, 7, 37-47.	5.3	138
4	I(py)2BF4, a New Reagent in Organic Synthesis: General Method for the 1,2-lodofunctionalization of Olefins. Angewandte Chemie International Edition in English, 1985, 24, 319-320.	4.4	134
5	On the Importance of Carbohydrate-Aromatic Interactions for the Molecular Recognition of Oligosaccharides by Proteins: NMR Studies of the Structure and Binding Affinity of AcAMP2-like Peptides with Non-Natural Naphthyl and Fluoroaromatic Residues. Chemistry - A European Journal, 2005. 11. 7060-7074.	3.3	110
6	Acid-mediated reaction of bis(pyridine)iodonium(I) tetrafluoroborate with aromatic compounds. A selective and general iodination method. Journal of Organic Chemistry, 1993, 58, 2058-2060.	3.2	105
7	Regioselective oxyfunctionalization of unactivated tertiary and secondary carbon-hydrogen bonds of alkylamines by methyl(trifluoromethyl)dioxirane in acid medium. Journal of the American Chemical Society, 1993, 115, 7250-7253.	13.7	99
8	lodine-Induced Stereoselective Carbocyclizations: A New Method for the Synthesis of Cyclohexane and Cyclohexene Derivatives. Angewandte Chemie International Edition in English, 1988, 27, 1546-1547.	4.4	94
9	Regio- and stereoselective iodofluorination of alkenes with bis(pyridine)iodonium(I) tetrafluoroborate. Journal of Organic Chemistry, 1991, 56, 2234-2237.	3.2	78
10	Synthesis of 2-functionalized 1,1-diiodo-1-alkenes. Generation and reactions of 1-iodo-1-lithio-1-alkenes and 1,1-dilithio-1-alkenes. Journal of the American Chemical Society, 1988, 110, 5567-5568.	13.7	77
11	Mercury(II) Oxide/Tetrafluoroboric Acid - A New Reagent in Organic Synthesis; A Convenient Diamination of Olefins. Synthesis, 1979, 1979, 962-964.	2.3	76
12	Competitive and Selective Csp ³ Br versus Csp ² Br Bond Activation in Palladiumâ€Catalysed Suzuki Crossâ€Coupling: An Experimental and Theoretical Study of the Role of Phosphine Ligands. Chemistry - A European Journal, 2010, 16, 13390-13397.	3.3	65
13	NHC-Stabilized Gold(I) Complexes: Suitable Catalysts for 6- <i>exo</i> -dig Heterocyclization of 1-(<i>o</i> -Ethynylaryl)ureas. Organic Letters, 2010, 12, 1900-1903.	4.6	65
14	Competitive Goldâ€Activation Modes in Terminal Alkynes: An Experimental and Mechanistic Study. Chemistry - A European Journal, 2014, 20, 683-688.	3.3	65
15	Discovering Copper for Methane C–H Bond Functionalization. ACS Catalysis, 2015, 5, 3726-3730.	11.2	63
16	Water Compatible Gold(III) atalysed Synthesis of Unsymmetrical Ethers from Alcohols. Chemistry - A European Journal, 2008, 14, 1518-1523.	3.3	62
17	Palladium-Catalyzed Suzuki–Miyaura Reaction Involving a Secondary sp3 Carbon: Studies of Stereochemistry and Scope of the Reaction. Chemistry - A European Journal, 2007, 13, 4223-4229.	3.3	56
18	Epoxidation of Primary and Secondary Alkenylammonium Salts with Dimethyldioxirane, Methyl(trifluoromethyl)dioxirane, and m-Chloroperbenzoic Acid. A General Synthetic Route to Epoxyalkylamines. Journal of Organic Chemistry, 1995, 60, 3692-3699.	3.2	55

#	Article	IF	CITATIONS
19	Oxidation of Alcohols to Carbonyl Compounds with CrO3·SiO2in Supercritical Carbon Dioxide. Journal of Organic Chemistry, 2006, 71, 1039-1042.	3.2	55
20	Waterâ€Soluble Palladium Nanoparticles: Click Synthesis and Applications as a Recyclable Catalyst in Suzuki Crossâ€Couplings in Aqueous Media. European Journal of Organic Chemistry, 2010, 2010, 5090-5099.	2.4	55
21	Why Is the Suzukiâ^'Miyaura Cross-Coupling of sp ³ Carbons in α-Bromo Sulfoxide Systems Fast and Stereoselective? A DFT Study on the Mechanism. Journal of Organic Chemistry, 2009, 74, 4049-4054.	3.2	54
22	Gold(I)-Catalyzed Intermolecular Cycloaddition of Allenamides with α,β-Unsaturated Hydrazones: Efficient Access to Highly Substituted Cyclobutanes. Organic Letters, 2014, 16, 6196-6199.	4.6	51
23	Oxygen atom insertion into the benzylic carbon-hydrogen bond of (R)-(-)-2-phenylbutane by methyl(trifluoromethyl)dioxirane: an efficient and mild regio- and stereoselective synthesis of (S)-(-)-2-phenyl-2-butanol. Journal of Organic Chemistry, 1992, 57, 953-955.	3.2	48
24	The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity. Bioorganic and Medicinal Chemistry, 2006, 14, 6971-6978.	3.0	48
25	Homogeneous Metal-Based Catalysis in Supercritical Carbon Dioxide as Reaction Medium. ACS Catalysis, 2016, 6, 4265-4280.	11.2	48
26	The tris(2-thienyl)methyl cation problem. NMR spectroscopic study. Journal of Organic Chemistry, 1991, 56, 3224-3229.	3.2	47
27	Onium ions. 17. Improved preparation, carbon-13 nuclear magnetic resonance structural study, and nucleophilic nitrolysis (nitrative cleavage) of diarylhalonium ions. Journal of Organic Chemistry, 1978, 43, 463-468.	3.2	46
28	A general and useful copper(II)-promoted iodofunctionalization of unsaturated systems. Journal of the Chemical Society Chemical Communications, 1987, .	2.0	44
29	Osmium(III) Complexes with POP Pincer Ligands: Preparation from Commercially Available OsCl ₃ ·3H ₂ O and Their X-ray Structures. Inorganic Chemistry, 2010, 49, 8665-8667.	4.0	44
30	Mechanism of the Oxidation of Sulfides by Dioxiranes. 1. Intermediacy of a 10-S-4 Hypervalent Sulfur Adduct. Journal of the American Chemical Society, 2002, 124, 9154-9163.	13.7	43
31	Carbanions. 3. Nuclear magnetic resonance spectroscopic and theoretical study of homoaromaticity in cyclohexadienyl anions. Journal of the American Chemical Society, 1978, 100, 4347-4352.	13.7	42
32	One-electron reduction of methyl(trifluoromethyl)dioxirane by iodide ion. Evidence for an electron-transfer chain reaction mediated by the superoxide ion. Journal of the American Chemical Society, 1992, 114, 8345-8349.	13.7	41
33	Stable carbocations. 211. 1-Phenylallyl cations and their rearrangement to indanyl cations in superacidic media. Journal of Organic Chemistry, 1978, 43, 1518-1520.	3.2	40
34	A new and specific method for the monomethylation of primary amines. Journal of the Chemical Society Chemical Communications, 1984, .	2.0	40
35	An expeditious and general aromatic iodination procedure. Journal of the Chemical Society Chemical Communications, 1992, , 1016-1017.	2.0	40
36	Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles. Angewandte Chemie - International Edition, 2018, 57, 13848-13852.	13.8	40

#	Article	IF	CITATIONS
37	Enzyme-mediated enantioselective acylation of secondary amines in organic solvents. Tetrahedron Letters, 1991, 32, 4197-4198.	1.4	39
38	Preparation of N,O-aminals as synthetic equivalents of H2Cĩ€†NAr and (H2Cĩ€†NHAr)+ions: neutral- and acid-promoted transformations. Journal of the Chemical Society Perkin Transactions 1, 1988, , 1631-1636.	0.9	38
39	Baeyerâ^'Villiger Oxidation with Potassium Peroxomonosulfate Supported on Acidic Silica Gel. Journal of Organic Chemistry, 2005, 70, 10879-10882.	3.2	38
40	Baeyerâ^'Villiger Oxidation in Supercritical CO2with Potassium Peroxomonosulfate Supported on Acidic Silica Gel. Journal of Organic Chemistry, 2006, 71, 6432-6436.	3.2	36
41	Silica-Immobilized NHC-Gold(I) Complexes: Versatile Catalysts for the Functionalization of Alkynes under Batch and Continuous Flow Conditions. ACS Catalysis, 2017, 7, 7146-7155.	11.2	36
42	l(py) ₂ BF ₄ , ein neues Reagens: allgemeine Methode für die 1,2â€lodfunktionalisierung von Olefinen. Angewandte Chemie, 1985, 97, 341-342.	2.0	34
43	Oxyfunctionalization of Aliphatic Esters by Methyl(trifluoromethyl)dioxirane. Journal of Organic Chemistry, 1996, 61, 5564-5566.	3.2	34
44	Iodomethane Oxidation by Dimethyldioxirane:Â A New Route to Hypoiodous Acid and Iodohydrines. Organic Letters, 1999, 1, 2125-2128.	4.6	33
45	Unprecedented Palladium-Catalyzed Cross-Coupling Reaction of α-Bromo Sulfoxides with Boronic Acids. Organic Letters, 2003, 5, 1705-1708.	4.6	32
46	Palladium-Catalyzed Reaction of Boronic Acids with Chiral and Racemic α-Bromo Sulfoxides. Journal of Organic Chemistry, 2004, 69, 8070-8076.	3.2	32
47	First Synthesis of β-Keto Sulfoxides by a Palladium-Catalyzed Carbonylative Suzuki Reaction. Organic Letters, 2005, 7, 4669-4672.	4.6	32
48	Stereoselection Parameters and Theoretical Model in the Enantioselective Protonation of Enolates with α-Sulfinyl Alcohols. Journal of Organic Chemistry, 1998, 63, 9342-9347.	3.2	30
49	Oppenauer Oxidation of Secondary Alcohols with 1,1,1-Trifluoroacetone as Hydride Acceptor. Journal of Organic Chemistry, 2007, 72, 9376-9378.	3.2	30
50	A new electrophilic addition to acetylenes. Synthesis of 1,2-iodofunctionalized olefins. Tetrahedron Letters, 1986, 27, 3303-3306.	1.4	29
51	A General and Efficient Method for the Monohydroxylation of Alkanes. Angewandte Chemie International Edition in English, 1996, 35, 217-218.	4.4	29
52	Remarkable effect of lithium bromide in the enantioselective protonation with α-sulfinyl alcohols. Tetrahedron Letters, 1998, 39, 3277-3280.	1.4	29
53	Influence of Remote Substituents on the Equatorial/Axial Selectivity in the Monooxygenation of Methylene Câ°'H Bonds of Substituted Cyclohexanes. Journal of the American Chemical Society, 2001, 123, 7487-7491.	13.7	29
54	Mercury(II) Oxide/Tetrafluoroboric Acid1; Enhanced Alkylating Ability of Alkyl Bromides: A General Synthesis of Alcohols and Ethers. Synthesis, 1983, 1983, 53-55.	2.3	27

GREGORIO ASENSIO

#	Article	IF	CITATIONS
55	Epoxidation of Olefins with a Silica-Supported Peracid. Journal of Organic Chemistry, 2012, 77, 6409-6413.	3.2	27
56	Aryl radicals by copper(II) oxidation of hydrazines: A new method for the oxidative and reductive arylation of alkenes. Tetrahedron Letters, 1989, 30, 4709-4712.	1.4	26
57	Efficient asymmetric protonation of enolates with readily accessible chiral α-sulfinyl alcohols. Tetrahedron: Asymmetry, 1998, 9, 4073-4078.	1.8	26
58	The oxidation of alkanes with dimethyldioxirane; a new mechanistic insight. Tetrahedron Letters, 1997, 38, 2373-2376.	1.4	25
59	Baeyer–Villiger oxidation of ketones with a silica-supported peracid in supercritical carbon dioxide under flow conditions. Green Chemistry, 2009, 11, 994.	9.0	25
60	Catalytic Functionalization of Methane and Light Alkanes in Supercritical Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 11013-11018.	3.3	25
61	Phase transfer catalysis and homogeneous reactions with β-oxyalkyl radicals from organomercurials. Tetrahedron, 1983, 39, 2863-2868.	1.9	24
62	Gold(I) atalyzed Reactions of 1â€(<i>ortho</i> â€Alkynylaryl)ureas: Highly Selective Heterocyclization and Synthesis of Mixed <i>N</i> , <i>O</i> â€Acetals. Advanced Synthesis and Catalysis, 2014, 356, 229-236.	4.3	24
63	H-Bonding Interactions in the Epoxidation of Alkenylammonium Salts with Dimethyldioxirane andm-Chloroperbenzoic Acid:A A Kinetic Study. Journal of Organic Chemistry, 1999, 64, 4705-4711.	3.2	23
64	Oxidation of Sulfides with a Silica‣upported Peracid in Supercritical Carbon Dioxide under Flow Conditions: Tuning Chemoselectivity with Pressure. European Journal of Organic Chemistry, 2010, 2010, 6200-6206.	2.4	23
65	Functionalization of C _{<i>n</i>} H _{2<i>n</i>+2} Alkanes: Supercritical Carbon Dioxide Enhances the Reactivity towards Primary Carbon–Hydrogen Bonds. ChemCatChem, 2015, 7, 3254-3260.	3.7	23
66	Gold(<scp>i</scp>)-catalysed cascade reactions in the synthesis of 2,3-fused indole derivatives. Chemical Communications, 2015, 51, 12384-12387.	4.1	23
67	Mercury(II) Oxide/Tetrafluoroboric Acid; A Convenient Reagent for the Hydroxy(alkoxy)-phenylamination of Alkenes. Synthesis, 1981, 1981, 376-378.	2.3	22
68	Enantioselective protonation/diastereoselective reduction with sodium naphthalenide-acetamide; a new synthesis of chiral trans-2-phenylcyclohexanol. Tetrahedron Letters, 1999, 40, 3939-3940.	1.4	22
69	One electron transfer chain decomposition of trifluoroacetone diperoxide: The first 1,2,4,5-tetroxane with O-transfer capability. Tetrahedron Letters, 1992, 33, 5833-5836.	1.4	21
70	Monoalkylation of primary aromatic amines via N-(alkoxymethyl)aryl amines. Evidence for the formation of stable monomeric methyleneamines. Journal of the Chemical Society Chemical Communications, 1983, .	2.0	20
71	A simple and general route to aryl iodides from arenes. Journal of the Chemical Society Perkin Transactions 1, 1984, , 2623-2624.	0.9	20
72	Epoxidation of Olefins with a Silica-Supported Peracid in Supercritical Carbon Dioxide under Flow Conditions. Journal of Organic Chemistry, 2012, 77, 4706-4710.	3.2	20

#	Article	IF	CITATIONS
73	The question of the reversibility in the aminomercuration of olefins. Synthesis of N-aryl-9-azabicyclo[4.2.1]and [3.3.1] nonanes by aminomercuration of cis-cis- 1.5-cyclooctadiene. Tetrahedron, 1984, 40, 1199-1204.	1.9	19
74	Tandem cycloaddition–enzymatic transesterification. An enantioselective Diels–Alder reaction equivalent. Journal of the Chemical Society Perkin Transactions 1, 1990, , 3209-3210.	0.9	19
75	A new and versatile method for iodofunctionalization of 1,3-dienes. Tetrahedron Letters, 1986, 27, 1715-1718.	1.4	18
76	Evidence for the involvement of a sulfurane intermediate in the oxidation of simple sulfides by methyl(trifluoromethyl)dioxirane. Tetrahedron Letters, 1996, 37, 2299-2302.	1.4	18
77	Oxygenation of Alkane Câ^'H Bonds with Methyl(trifluoromethyl)dioxirane:Â Effect of the Substituents and the Solvent on the Reaction Rate. Journal of Organic Chemistry, 2005, 70, 7919-7924.	3.2	18
78	The Role of Organic Fluorine in the Supramolecular Assembly of Halogenated β-Hydroxysulphoxides Diastereomers. Crystal Growth and Design, 2006, 6, 2769-2778.	3.0	18
79	The role of Zn2+ in enhancing the rate and stereoselectivity of the aldol reactions catalyzed by the simple prolinamide model. Tetrahedron, 2011, 67, 7050-7056.	1.9	18
80	A Quantitative Model for Alkane Nucleophilicity Based on Câ^'H Bond Structural/Topological Descriptors. Angewandte Chemie - International Edition, 2020, 59, 3112-3116.	13.8	18
81	A study on the aminomercuration-nucleophilic demercuration of1,5-cyclooctadiene; stereoselective synthesis of 2,6-disubstituted-9-aza bicyclo[3.3.1]nonanes. Tetrahedron, 1992, 48, 3813-3826.	1.9	17
82	FeCl ₃ ·6H ₂ O-Catalyzed Mukaiyama-Aldol Type Reactions of Enolizable Aldehydes and Acetals. Journal of Organic Chemistry, 2014, 79, 8263-8270.	3.2	17
83	Alkylidene transfer from monochloroalkylmercury(II) compounds to aromatic amines; selective c-alkylation. Journal of the Chemical Society Perkin Transactions 1, 1980, , 1420.	0.9	16
84	First synthesis of the chiral mixed O/S ligands, 1,2-sulfinyl thiols: application as chiral proton sources in enantioselective protonations of enolates. Tetrahedron: Asymmetry, 2000, 11, 3481-3493.	1.8	16
85	Hyperconjugative Control by Remote Substituents of Diastereoselectivity in the Oxygenation of Hydrocarbons. Organic Letters, 2000, 2, 831-834.	4.6	15
86	Catalytic aminomercuration of olefins in a tandem aminomercuration-deoxymercuration; One-step synthesis of secondary n-arylallylamines from allylalcohols. Tetrahedron, 1990, 46, 2453-2460.	1.9	14
87	Enantioselective Protonation of the Lithium Transient Enolate of2-Methyltetralone with 2-Sulfinyl Alcohols. European Journal of Organic Chemistry, 2005, 2005, 1561-1567.	2.4	14
88	Reactions at Interfaces: Oxygenation of <i>n</i> -Butyl Ligands Anchored on Silica Surfaces with Methyl(trifluoromethyl)dioxirane. Journal of Organic Chemistry, 2011, 76, 10129-10139.	3.2	14
89	Alkoxymercuriation of conjugated dienes. Regio- and stereo-selective synthesis of unsaturated diethers. Journal of the Chemical Society Perkin Transactions 1, 1984, , 629-633.	0.9	13
90	Palladiumâ€Catalyzed Suzuki–Miyaura Crossâ€Coupling of αâ€Halomethyl Oxime Ethers and Siteâ€Selective Crossâ€Coupling of Dihalo Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 2327-2342.	4.3	13

GREGORIO ASENSIO

#	Article	IF	CITATIONS
91	Influence of structural factors and enzyme type on the reactivity and enantioselectivity of the enzymatic esterification of bicyclic <i>meso</i> dialcohols. Chemische Berichte, 1992, 125, 2233-2238.	0.2	12
92	Switchable Palladium-Catalyst Reaction of Bromomethyl Sulfoxides, CO, and N-Nucleophiles: Aminocarbonylation at Csp3versus Oxidative Carbonylation of Amines. Journal of Organic Chemistry, 2012, 77, 9693-9701.	3.2	12
93	On the ionizing properties of supercritical carbon dioxide: uncatalyzed electrophilic bromination of aromatics. RSC Advances, 2014, 4, 51016-51021.	3.6	12
94	Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles. Angewandte Chemie, 2018, 130, 14044-14048.	2.0	12
95	Mercuty(II) oxide-tetrafluoroboric acid-promoted 1,4-cycloamination of 1,3-dienes. Synthesis of 9-azabicyclo[4.2.1.]non-7-enes and 3-pyrrolines. Journal of the Chemical Society Chemical Communications, 1982, , 1181-1182.	2.0	11
96	Synthesis of an enantiopure 2-arylcyclohexanols from prochiral enol acetates by an enantioselective protonation/diastereoselective reduction sequence. Tetrahedron: Asymmetry, 2003, 14, 3851-3855.	1.8	11
97	Supercritical Carbon Dioxide: A Promoter of Carbon–Halogen Bond Heterolysis. Angewandte Chemie - International Edition, 2013, 52, 13298-13301.	13.8	11
98	Palladiumâ€Catalyzed Suzuki Carbonylative Reaction of αâ€Halomethyl Oxime Ethers: A Regioselective Route to Unsymmetrical 1,3â€Oxyiminoketones. Advanced Synthesis and Catalysis, 2014, 356, 3649-3658.	4.3	11
99	Mercury(II) oxide/tetrafluoroboric acid. An unusual behavior in the oxidation of alkenes. Synthesis of trans-cinnamylethers. Tetrahedron Letters, 1981, 22, 2239-2240.	1.4	10
100	Mercury(II) oxide/tetrafluoroboric acid-promoted vicinal hydroxy- and alkoxylation of alkenes. Tetrahedron, 1984, 40, 2563-2568.	1.9	10
101	A simple and general synthesis of symmetrical and unsymmetrical bis(arylamino)methanes. Reactions of N,Oâ€acetals with nitrogen bases. Chemische Berichte, 1988, 121, 1813-1816.	0.2	10
102	Selective lipase-catalyzed acylation of epimeric α-sulfinyl alcohols: an efficient method of separation. Tetrahedron: Asymmetry, 1999, 10, 561-566.	1.8	10
103	Mechanism of the Oxidation of Sulfides by Dioxiranes:Â Conformational Mobility and Transannular Interaction in the Oxidation of Thianthrene 5-Oxide. Journal of Organic Chemistry, 2004, 69, 9090-9099.	3.2	10
104	Anaerobic Palladium-Catalyzed Chemoselective Oxidation of Allylic and Benzylic Alcohols with α-Bromo Sulfoxide as a Co-oxidant. Advanced Synthesis and Catalysis, 2007, 349, 987-991.	4.3	10
105	Counterion's Effect on the Catalytic Activity of Znâ€Prolinamide Complexes in Aldol Condensations. European Journal of Organic Chemistry, 2012, 2012, 4185-4191.	2.4	10
106	C4H7O2+ ions. Thermochemistry in sulfuric acid solution and chemical-ionization mass spectra relationships. Journal of Organic Chemistry, 1987, 52, 4790-4792.	3.2	9
107	Thermolysis of unsaturated dicarboxylic acids in sulfuric acid and oleum. A comparison with the CIMS fragmentation patterns. Journal of Organic Chemistry, 1988, 53, 5480-5484.	3.2	9
108	Eine allgemeine und effiziente Methode zur Monohydroxylierung von Alkanen. Angewandte Chemie, 1996, 108, 196-198.	2.0	9

GREGORIO ASENSIO

#	Article	IF	CITATIONS
109	The actual mercurating species in the mercuration of aromatic amines and the aminomercuration of olefins. Tetrahedron, 1984, 40, 5053-5061.	1.9	8
110	Monoalkylation of primary aliphatic amines via N-alkyl-N-(alkylthiomethyl) ammonium chlorides. Evidence for the formation of stable N-methylenealkylamines. Journal of the Chemical Society Chemical Communications, 1984, .	2.0	8
111	1,4-regioselective iodofunctionalizations of 1,3-butadiene. Tetrahedron Letters, 1988, 29, 6497-6500.	1.4	8
112	Inhibition of imidazolidinone intermediate formation in the aldol reactions catalyzed by zinc–prolinamide complexes. Tetrahedron, 2011, 67, 8705-8709.	1.9	8
113	Selective "One-Pot―Synthesis of Functionalized Cyclopentenones. Journal of Organic Chemistry, 2012, 77, 6327-6331.	3.2	8
114	S _N 1 reactions in supercritical carbon dioxide in the presence of alcohols: the role of preferential solvation. Organic and Biomolecular Chemistry, 2016, 14, 6554-6560.	2.8	8
115	Electronâ€Transfer in the Lightâ€Promoted 1,6â€Cyclodimerization of 1,1â€Diâ€2â€thienylethylene. A Thermal ar Photochemical Study. Chemische Berichte, 1991, 124, 1203-1206.	າd 0.2	7
116	C5H7O2+Ions:Â The Correlation between Their Thermochemistry in Acidic Solution and Their Chemistry in the Gas Phase. Journal of Organic Chemistry, 2000, 65, 964-968.	3.2	7
117	A Simple Protocol for the Generation of Methyl(trifluoromethyl)dioxirane. Synlett, 2007, 2007, 0047-0050.	1.8	7
118	On the Reactivity of C(sp ³)–H σâ€Bonds: Oxygenation with Methyl(trifluoromethyl)Adioxirane. European Journal of Organic Chemistry, 2008, 2008, 455-466.	2.4	7
119	Regioselectivity in the Ligand-Assisted Addition of Vinylmagnesium Bromide: An Experimental and Theoretical Study on the I³-Alkoxycyclobutenone Model. Journal of Organic Chemistry, 2008, 73, 6521-6533.	3.2	7
120	Antimicrobial Peptides and Their Superior Fluorinated Analogues: Structure–Activity Relationships as Revealed by NMR Spectroscopy and MD Calculations. ChemBioChem, 2010, 11, 2424-2432.	2.6	7
121	Effect of addition of Lewis/Brönsted acids in the asymmetric aldol condensation catalyzed by trifluoroacetate salts of proline-based dipeptides. Tetrahedron, 2012, 68, 7966-7972.	1.9	7
122	Modified photobehavior of carboxylic acid derivatives induced by protonation. Tetrahedron, 1987, 43, 905-910.	1.9	6
123	Isomerization versus Decarboxylation of Protonated Oxetanone: Comparison between Experimental Results and Theoretical Calculations. Angewandte Chemie International Edition in English, 1990, 29, 1146-1147.	4.4	6
124	A simple and efficient route to 1,4-diketones from squaric acid. Tetrahedron, 1995, 51, 12373-12382.	1.9	6
125	An improved method for the asymmetric protonation of enolates with chiral α-sulfinyl alcohols/trifluoroethanol. Tetrahedron: Asymmetry, 2001, 12, 1359-1362.	1.8	6
126	Non carbenoid alkylidene transfer from monohalogenoalkylmercury(II) compounds to amines; synthesis of bis-(4-aminophenyl)alkanes. Journal of the Chemical Society Chemical Communications, 1979, , 339.	2.0	5

#	Article	IF	CITATIONS
127	Stabilization of the tris(2-thienyl)methyl cation by formation of polymethine units. A thiophene S–S intramolecular interaction. Journal of the Chemical Society Chemical Communications, 1993, , 1476-1477.	2.0	5
128	Synthesis of chiral β-disulfoxides and their racemization with strong bases. Tetrahedron: Asymmetry, 1997, 8, 3647-3650.	1.8	5
129	Efficient synthesis of racemic and chiral alkenyl sulfoxides by palladium-catalyzed Suzuki coupling. Tetrahedron, 2010, 66, 6901-6905.	1.9	5
130	Palladium atalyzed Alkoxy―and Aminocarbonylation of αâ€Halomethyl Oxime Ethers: Synthesis of 1,3â€Alkoxyimino Esters and 1,3â€Alkoxyimino Amides. Advanced Synthesis and Catalysis, 2015, 357, 430-442.	4.3	5
131	Favoring Alkane Primary Carbon–Hydrogen Bond Functionalization in Supercritical Carbon Dioxide as Reaction Medium. ACS Sustainable Chemistry and Engineering, 2019, 7, 7346-7352.	6.7	5
132	Chemical and spectroscopical evidence for an electronâ€ŧransfer mechanism in the reaction of arenesulfonyl chlorides with anions. Chemische Berichte, 1989, 122, 1799-1801.	0.2	4
133	C5H9O2+ ions: the correlation between their thermochemistry in acidic solution and their chemistry in the gas phase. Journal of Organic Chemistry, 1992, 57, 6202-6206.	3.2	4
134	C-C Bond Cleavage in O-Centered Mono- and Dianions Derived from α-Dicarbonyl Compounds. Tetrahedron, 1995, 51, 10093-10100.	1.9	4
135	Use of Saccharomyces cerevisiae as a whole cell system for aldol condensation in organic medium: Study of the factors affecting the biotransformation. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 90-94.	1.8	4
136	A Quantitative Model for Alkane Nucleophilicity Based on Câ^'H Bond Structural/Topological Descriptors. Angewandte Chemie, 2020, 132, 3136-3140.	2.0	4
137	Direct observation and thermal transformations of dications derived from dibenzotropylium ions. Tetrahedron, 1992, 48, 8465-8470.	1.9	3
138	First evidence of a single electron transfer process from a two-heteroatom-centred anion. Easy generation of amidyl radicals. Journal of the Chemical Society Chemical Communications, 1987, , 263.	2.0	2
139	lsomerisiert oder decarboxyliert protoniertes Oxetanon? Ein Vergleich experimenteller und theoretischer Befunde. Angewandte Chemie, 1990, 102, 1187-1188.	2.0	2
140	Conformational Mobility of Thianthrene-5-oxide. Journal of Organic Chemistry, 2005, 70, 3450-3457.	3.2	2
141	Inverse solvent effects in the heterogeneous and homogeneous epoxidation of cis-2-heptene with [2-percarboxyethyl]-functionalized silica and meta-chloroperbenzoic acid. Organic and Biomolecular Chemistry, 2014, 12, 3246-3250.	2.8	2
142	From overstoichiometric to substoichiometric enantioselective protonation with 2-sulfinyl alcohols: A view in perspective. Arkivoc, 2005, 2005, 266-286.	0.5	2
143	Straightforward Synthesis of α-Chloromethylketimines Catalyzed by Gold(I). A Clean Way to Building Blocks. Journal of Organic Chemistry, 2022, 87, 3114-3122.	3.2	2
144	Palladiumâ€Catalyzed C–C Ring Closure in αâ€Chloromethylimines: Synthesis of 1 <i>H</i> â€Indoles. Europear Journal of Organic Chemistry, 2019, 2019, 1229-1235.	¹ 2.4	1

#	Article	IF	CITATIONS
145	Competition between decarboxylation and isomerization in the C3H5O 2+ energy surface. Justification of the experimental results by molecular orbital calculations on the solvated ions. Journal of Physical Organic Chemistry, 1994, 7, 221-226.	1.9	0
146	Unprecedented Palladium-Catalyzed Cross-Coupling Reaction of α-Bromo Sulfoxides with Boronic Acids ChemInform, 2003, 34, no.	0.0	0
147	Synthesis of Enantiopure 2-Arylcyclohexanols from Prochiral Enol Acetates by an Enantioselective Protonation/Diastereoselective Reduction Sequence ChemInform, 2004, 35, no.	0.0	0
148	Palladium-Catalyzed Reaction of Boronic Acids with Chiral and Racemic ?-Bromo Sulfoxides ChemInform, 2005, 36, no.	0.0	0
149	From Overstoichiometric to Substoichiometric Enantioselective Protonation with 2-Sulfinyl Alcohols: A View in Perspective. ChemInform, 2005, 36, no.	0.0	0
150	Oxygenation of Alkane C—H Bonds with Methyl(trifluoromethyl)dioxirane: Effect of the Substituents and the Solvent on the Reaction Rate ChemInform, 2005, 36, no.	0.0	0
151	Titelbild: Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles (Angew. Chem. 42/2018). Angewandte Chemie, 2018, 130, 13885-13885.	2.0	0