Hyung Don Ryoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2896167/publications.pdf

Version: 2024-02-01

218677 265206 2,778 43 26 42 citations g-index h-index papers 110 110 110 3149 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Apoptotic Cells Can Induce Compensatory Cell Proliferation through the JNK and the Wingless Signaling Pathways. Developmental Cell, 2004, 7, 491-501.	7.0	546
2	Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell Biology, 2002, 4, 432-438.	10.3	263
3	Unfolded protein response in a Drosophila model for retinal degeneration. EMBO Journal, 2007, 26, 242-252.	7.8	253
4	The Role of Apoptosis-Induced Proliferation for Regeneration and Cancer. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008797-a008797.	5.5	186
5	Integration of UPRER and Oxidative Stress Signaling in the Control of Intestinal Stem Cell Proliferation. PLoS Genetics, 2014, 10, e1004568.	3.5	100
6	ER stress protects from retinal degeneration. EMBO Journal, 2009, 28, 1296-1307.	7.8	94
7	PERK Limits Drosophila Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress. PLoS Genetics, 2015, 11, e1005220.	3.5	86
8	Suppression of retinal degeneration in <i>Drosophila</i> by stimulation of ER-associated degradation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17043-17048.	7.1	85
9	CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. Nature Cell Biology, 2012, 14, 409-415.	10.3	79
10	4E-BP is a target of the GCN2–ATF4 pathway during <i>Drosophila</i> development and aging. Journal of Cell Biology, 2017, 216, 115-129.	5.2	74
11	A modified UPR stress sensing system reveals a novel tissue distribution of IRE1/XBP1 activity during normal Drosophila development. Cell Stress and Chaperones, 2013, 18, 307-319.	2.9	68
12	Xbp1-Independent Ire1 Signaling Is Required for Photoreceptor Differentiation and Rhabdomere Morphogenesis in Drosophila. Cell Reports, 2013, 5, 791-801.	6.4	64
13	<i>Drosophila</i> IAP antagonists form multimeric complexes to promote cell death. Journal of Cell Biology, 2010, 190, 1039-1052.	5.2	63
14	Distinct death mechanisms in Drosophila development. Current Opinion in Cell Biology, 2010, 22, 889-895.	5.4	61
15	Drosophila as a model for unfolded protein response research. BMB Reports, 2015, 48, 445-453.	2.4	56
16	Regulation of the Drosophila apoptosome through feedback inhibition. Nature Cell Biology, 2008, 10, 1440-1446.	10.3	54
17	Regulation of Cell Death by IAPs and Their Antagonists. Current Topics in Developmental Biology, 2015, 114, 185-208.	2.2	54
18	Translational induction of ATF4 during integrated stress response requires noncanonical initiation factors eIF2D and DENR. Nature Communications, 2020, 11, 4677.	12.8	49

#	Article	IF	CITATIONS
19	A Drosophila Reporter for the Translational Activation of ATF4 Marks Stressed Cells during Development. PLoS ONE, 2015, 10, e0126795.	2.5	42
20	Two distinct nodes of translational inhibition in the Integrated Stress Response. BMB Reports, 2017, 50, 539-545.	2.4	40
21	Unfolded Protein Response in Drosophila: Why Another Model Can Make It Fly. Cell Cycle, 2007, 6, 830-835.	2.6	38
22	Impaired tissue growth is mediated by checkpoint kinase 1 (CHK1) in the integrated stress response. Journal of Cell Science, 2010, 123, 2892-2900.	2.0	38
23	The unfolded protein response in metazoan development. Journal of Cell Science, 2019, 132, .	2.0	38
24	Drosophila XBP1 Expression Reporter Marks Cells under Endoplasmic Reticulum Stress and with High Protein Secretory Load. PLoS ONE, 2013, 8, e75774.	2.5	36
25	STAT92E is a positive regulator of <i> Drosophila < /i > inhibitor of apoptosis 1 (DIAP/1) and protects against radiation-induced apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13805-13810.</i>	7.1	35
26	The requirement of IRE1-XBP1 in resolving physiological stress during <i>Drosophila</i> development. Journal of Cell Science, 2017, 130, 3040-3049.	2.0	34
27	Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor. Neuron, 2021, 109, 1979-1995.e6.	8.1	32
28	Long and short (timeframe) of endoplasmic reticulum stressâ€induced cell death. FEBS Journal, 2016, 283, 3718-3722.	4.7	30
29	The transcription factor $Xrp1$ is required for PERK-mediated antioxidant gene induction in Drosophila. ELife, $2021,10,$.	6.0	30
30	The GCN2-ATF4 Signaling Pathway Induces 4E-BP to Bias Translation and Boost Antimicrobial Peptide Synthesis in Response to Bacterial Infection. Cell Reports, 2017, 21, 2039-2047.	6.4	26
31	Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiology of Disease, 2020, 137, 104770.	4.4	22
32	CDK7 Regulates the Mitochondrial Localization of a Tail-Anchored Proapoptotic Protein, Hid. Cell Reports, 2013, 5, 1481-1488.	6.4	15
33	Hyperactivated Wnt Signaling Induces Synthetic Lethal Interaction with Rb Inactivation by Elevating TORC1 Activities. PLoS Genetics, 2014, 10, e1004357.	3.5	15
34	Detection of Cell Death in Drosophila Tissues. Methods in Molecular Biology, 2016, 1419, 131-144.	0.9	15
35	highroad Is a Carboxypetidase Induced by Retinoids to Clear Mutant Rhodopsin-1 in Drosophila Retinitis Pigmentosa Models. Cell Reports, 2018, 22, 1384-1391.	6.4	14
36	Drosophila fabp is required for light-dependent Rhodopsin-1 clearance and photoreceptor survival. PLoS Genetics, 2021, 17, e1009551.	3.5	11

#	Article	IF	CITATIONS
37	Role of Drosophila EDEMs in the degradation of the alpha-1-antitrypsin Z variant. International Journal of Molecular Medicine, 2015, 35, 870-876.	4.0	8
38	Triazolo [4,5-d]pyrimidines as Validated General Control Nonderepressible 2 (GCN2) Protein Kinase Inhibitors Reduce Growth of Leukemia Cells. Computational and Structural Biotechnology Journal, 2018, 16, 350-360.	4.1	7
39	A protein-trap allele reveals roles for <i>Drosophila</i> ATF4 in photoreceptor degeneration, oogenesis and wing development. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	7
40	Pro-apoptotic signaling pathway by CDK5 and MEKK1. Cell Cycle, 2012, 11, 1746-1747.	2.6	3
41	Drosophila Unfolded Protein Response (UPR) Assays In Vitro and In Vivo. Methods in Molecular Biology, 2022, 2378, 261-277.	0.9	2
42	Developmental apoptosis in health and disease. , 2005, , 49-74.		1
43	The role of Ire1 in Drosophila eye pigmentation revealed by an RNase dead allele. Developmental Biology, 2021, 478, 205-211.	2.0	1