Carlos Castillo-Chavez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2896091/publications.pdf Version: 2024-02-01

		28190	27345
216	12,944	55	106
papers	citations	h-index	g-index
227	007	227	7510
227	227	227	/519
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Epidemics on networks: Reducing disease transmission using health emergency declarations and peer communication. Infectious Disease Modelling, 2020, 5, 12-22.	1.2	26
2	Mobility restrictions for the control of epidemics: When do they work?. PLoS ONE, 2020, 15, e0235731.	1.1	59
3	A Tour of the Basic Reproductive Number and the Next Generation of Researchers. Foundations for Undergraduate Research in Mathematics, 2020, , 87-124.	0.0	11
4	Mathematical Models in Epidemiology. Texts in Applied Mathematics, 2019, , .	0.4	283
5	Dengue Fever and the Zika Virus. Texts in Applied Mathematics, 2019, , 409-425.	0.4	2
6	Spatial Structure in Disease Transmission Models. Texts in Applied Mathematics, 2019, , 457-476.	0.4	3
7	Challenges, Opportunities and Theoretical Epidemiology. Texts in Applied Mathematics, 2019, , 507-531.	0.4	8
8	Simple Compartmental Models for Disease Transmission. Texts in Applied Mathematics, 2019, , 21-61.	0.4	8
9	Models with Heterogeneous Mixing. Texts in Applied Mathematics, 2019, , 179-227.	0.4	2
10	Introduction: A Prelude to Mathematical Epidemiology. Texts in Applied Mathematics, 2019, , 3-19.	0.4	2
11	Disease Transmission Models with Age Structure. Texts in Applied Mathematics, 2019, , 429-455.	0.4	0
12	Endemic Disease Models. Texts in Applied Mathematics, 2019, , 63-116.	0.4	7
13	Models for Ebola. Texts in Applied Mathematics, 2019, , 351-390.	0.4	0
14	Models for Influenza. Texts in Applied Mathematics, 2019, , 311-350.	0.4	1
15	Models for Tuberculosis. Texts in Applied Mathematics, 2019, , 249-272.	0.4	0
16	Models for HIV/AIDS. Texts in Applied Mathematics, 2019, , 273-310.	0.4	0
17	Models for Malaria. Texts in Applied Mathematics, 2019, , 391-408.	0.4	0
18	Dynamics of a diffusion reaction prey–predator model with delay in prey: Effects of delay and spatial components. Journal of Mathematical Analysis and Applications, 2018, 461, 1177-1214.	0.5	19

#	Article	IF	CITATIONS
19	Modeling the diet dynamics of children: the roles of socialization and the school environment. Letters in Biomathematics, 2018, 5, 275-306.	0.3	3
20	Detecting the contagion effect in mass killings; a constructive example of the statistical advantages of unbinned likelihood methods. PLoS ONE, 2018, 13, e0196863.	1.1	6
21	Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences and Engineering, 2018, 15, 1401-1423.	1.0	5
22	Mathematical Analysis of an SIQR Influenza Model with Imperfect Quarantine. Bulletin of Mathematical Biology, 2017, 79, 1612-1636.	0.9	42
23	Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment. Infectious Disease Modelling, 2017, 2, 21-34.	1.2	21
24	Yachay's promise. Science, 2017, 357, 881-881.	6.0	3
25	Migration Effects on Population Dynamics of the Honeybee-mite Interactions. Mathematical Modelling of Natural Phenomena, 2017, 12, 84-115.	0.9	11
26	The role of mobility and health disparities on the transmission dynamics of Tuberculosis. Theoretical Biology and Medical Modelling, 2017, 14, 3.	2.1	19
27	Student-Driven Research at the Mathematical and Theoretical Biology Institute. American Mathematical Monthly, 2017, 124, 876.	0.2	3
28	Pair Formation in Structured Populations. , 2017, , 47-66.		3
29	On the dynamics of dengue virus type 2 with residence times and vertical transmission. Letters in Biomathematics, 2016, 3, 140-160.	0.3	8
30	Perspectives on the role of mobility, behavior, and time scales in the spread of diseases. Proceedings of the United States of America, 2016, 113, 14582-14588.	3.3	49
31	Vector-borne diseases models with residence times – A Lagrangian perspective. Mathematical Biosciences, 2016, 281, 128-138.	0.9	47
32	Modeling the Case of Early Detection ofÂEbola Virus Disease. , 2016, , 57-70.		2
33	Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics, 2016, 17, 50-55.	1.5	112
34	From Bee Species Aggregation to Models of Disease Avoidance: The Ben-Hur effect. , 2016, , 169-185.		4
35	Modeling Ebola at the Mathematical and Theoretical Biology Institute (MTBI). Notices of the American Mathematical Society, 2016, 63, 366-371.	0.1	6
36	A two-strain TB model with multiple latent stages. Mathematical Biosciences and Engineering, 2016, 13, 741-785.	1.0	14

#	Article	IF	CITATIONS
37	Modeling eating behaviors: The role of environment and positive food association learning via a Ratatouille effect. Mathematical Biosciences and Engineering, 2016, 13, 841-855.	1.0	2
38	Mass Media and the Contagion of Fear: The Case of Ebola in America. PLoS ONE, 2015, 10, e0129179.	1.1	175
39	Why REUs Matter. , 2015, , 125-145.		1
40	Beyond Ebola: lessons to mitigate future pandemics. The Lancet Global Health, 2015, 3, e354-e355.	2.9	42
41	Modelling the effect of early detection of Ebola. Lancet Infectious Diseases, The, 2015, 15, 148-149.	4.6	46
42	Towards a Quantitative Science of Sustainability. Bulletin of Mathematical Biology, 2015, 77, 254-258.	0.9	1
43	Resource Consumption, Sustainability, and Cancer. Bulletin of Mathematical Biology, 2015, 77, 319-338.	0.9	6
44	The role of residence times in two-patch dengue transmission dynamics and optimal strategies. Journal of Theoretical Biology, 2015, 374, 152-164.	0.8	55
45	Per capita incidence of sexually transmitted infections increases systematically with urban population size: a cross-sectional study. Sexually Transmitted Infections, 2015, 91, 610-614.	0.8	35
46	SIS and SIR Epidemic Models Under Virtual Dispersal. Bulletin of Mathematical Biology, 2015, 77, 2004-2034.	0.9	72
47	Contagion in Mass Killings and School Shootings. PLoS ONE, 2015, 10, e0117259.	1.1	174
48	Epidemiology Modeling. , 2015, , 427-439.		0
49	A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 89-130.	0.5	10
50	Vertical Transmission in a Two-Strain Model of Dengue Fever. Letters in Biomathematics, 2014, 1, 249-271.	0.3	14
51	Merging Economics and Epidemiology to Improve the Prediction and Management of Infectious Disease. EcoHealth, 2014, 11, 464-475.	0.9	87
52	Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects. Mathematical Biosciences, 2014, 248, 97-116.	0.9	23
53	Dynamics of an "SAIQR" Influenza Model. Biomath, 2014, 3, .	0.3	9
54	Temporal Variations in the Effective Reproduction Number of the 2014 West Africa Ebola Outbreak. PLOS Currents, 2014, 6, .	1.4	85

#	Article	IF	CITATIONS
55	Optimal Control for a Discrete Time Influenza Model. Advances in Intelligent Systems and Computing, 2014, , 231-237.	0.5	0
56	Discrete Epidemic Models with Arbitrary Stage Distributions and Applications to Disease Control. Bulletin of Mathematical Biology, 2013, 75, 1716-1746.	0.9	32
57	A Preliminary Theoretical Analysis of a Research Experience for Undergraduates Community Model. Primus, 2013, 23, 860-880.	0.3	4
58	SIR DYNAMICS WITH ECONOMICALLY DRIVEN CONTACT RATES. Natural Resource Modelling, 2013, 26, 505-525.	0.8	29
59	Some recent developments on linear determinacy. Mathematical Biosciences and Engineering, 2013, 10, 1419-1436.	1.0	12
60	Chalenges and Opportunities in Mathematical and Theoretical Biology and Medicine: Foreword to Volume 2 (2013) of Biomath. Biomath, 2013, 2, .	0.3	1
61	Multiscale analysis of compartment models with dispersal. Journal of Biological Dynamics, 2012, 6, 50-79.	0.8	10
62	Global Dynamics of a Plant-Herbivore Model with Toxin-Determined Functional Response. SIAM Journal on Applied Mathematics, 2012, 72, 1002-1020.	0.8	20
63	Mixing in age-structured population models of infectious diseases. Mathematical Biosciences, 2012, 235, 1-7.	0.9	58
64	Transitional regimes as early warning signals in resource dependent competition models. Mathematical Biosciences, 2012, 240, 114-123.	0.9	16
65	Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, 2012, , .	0.4	593
66	Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 2243-2266.	0.5	30
67	Differential impact of sickle cell trait on symptomatic and asymptomatic malaria. Mathematical Biosciences and Engineering, 2012, 9, 877-898.	1.0	12
68	ROLES OF HOST AND PATHOGEN MOBILITY IN EPIDEMIC OUTBREAKS: MATHEMATICAL, MODELING AND EPIDEMIOLOGICAL CHALLENGES. , 2012, , 204-220.		0
69	Types of drinkers and drinking settings: an application of a mathematical model. Addiction, 2011, 106, 749-758.	1.7	34
70	A DETERMINISTIC METHODOLOGY FOR ESTIMATION OF PARAMETERS IN DYNAMIC MARKOV CHAIN MODELS. Journal of Biological Systems, 2011, 19, 71-100.	0.5	11
71	Dynamics of population communities with prey migrations and Allee effects: a bifurcation approach. Mathematical Medicine and Biology, 2011, 28, 129-152.	0.8	8
72	Evaluating the efficacy of antimicrobial cycling programmes and patient isolation on dual resistance in hospitals. Journal of Biological Dynamics, 2011, 5, 27-43.	0.8	24

#	Article	IF	CITATIONS
73	Adaptive human behavior in epidemiological models. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6306-6311.	3.3	351
74	Dynamics of a Stage-Structured Leslie-Gower Predator-Prey Model. Mathematical Problems in Engineering, 2011, 2011, 1-22.	0.6	14
75	Did Modeling Overestimate the Transmission Potential of Pandemic (H1N1-2009)? Sample Size Estimation for Post-Epidemic Seroepidemiological Studies. PLoS ONE, 2011, 6, e17908.	1.1	27
76	Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences and Engineering, 2011, 8, 141-170.	1.0	42
77	A note on the use of influenza vaccination strategies when supply is limited. Mathematical Biosciences and Engineering, 2011, 8, 171-182.	1.0	16
78	A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences and Engineering, 2011, 8, 183-197.	1.0	16
79	Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences and Engineering, 2011, 8, 199-222.	1.0	12
80	Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009. Mathematical Biosciences and Engineering, 2011, 8, 21-48.	1.0	54
81	Preface. Mathematical Biosciences and Engineering, 2011, 8, i-vi.	1.0	0
82	ON THE USE OF MECHANISTIC AND DATA-DRIVEN MODELS IN POPULATION DYNAMICS: THE CASE OF TUBERCULOSIS IN THE US OVER THAT PAST TWO CENTURIES. , 2011, , .		0
83	An application of queuing theory to SIS and SEIS epidemic models. Mathematical Biosciences and Engineering, 2010, 7, 809-823.	1.0	17
84	The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments. Socio-Economic Planning Sciences, 2010, 44, 45-56.	2.5	54
85	Optimal control intervention strategies in low- and high-risk problem drinking populations. Socio-Economic Planning Sciences, 2010, 44, 258-265.	2.5	23
86	Transmission dynamics and underreporting of Kala-azar in the Indian state of Bihar. Journal of Theoretical Biology, 2010, 262, 177-185.	0.8	57
87	Optimal control for pandemic influenza: The role of limited antiviral treatment and isolation. Journal of Theoretical Biology, 2010, 265, 136-150.	0.8	102
88	Static behavioral effects on gonorrhea transmission dynamics in a MSM population. Journal of Theoretical Biology, 2010, 267, 35-40.	0.8	12
89	Using inverse problem methods with surveillance data in pneumococcal vaccination. Mathematical and Computer Modelling, 2010, 51, 369-388.	2.0	1
90	Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009. Theoretical Biology and Medical Modelling, 2010, 7, 1.	2.1	171

#	Article	IF	CITATIONS
91	Myeloid cells in tumour–immune interactions. Journal of Biological Dynamics, 2010, 4, 315-327.	0.8	15
92	Public vaccination policy using an age-structured model of pneumococcal infection dynamics. Journal of Biological Dynamics, 2010, 4, 176-195.	0.8	12
93	A discrete events delay differential system model for transmission of Vancomycin-resistant enterococcus (VRE) in hospitals. Journal of Inverse and Ill-Posed Problems, 2010, 18, 787-821.	0.5	2
94	Notes from the heterogeneous: a few observations on the implications and necessity of affinity. Journal of Biological Dynamics, 2010, 4, 456-477.	0.8	10
95	Role of Prey Dispersal and Refuges on Predator-Prey Dynamics. SIAM Journal on Applied Mathematics, 2010, 70, 1821-1839.	0.8	39
96	Community resilience in collaborative learning. Discrete and Continuous Dynamical Systems - Series B, 2010, 14, 17-40.	0.5	13
97	Discrete epidemic models. Mathematical Biosciences and Engineering, 2010, 7, 1-15.	1.0	68
98	A cost-based comparison of quarantine strategies for new emerging diseases. Mathematical Biosciences and Engineering, 2010, 7, 687-717.	1.0	49
99	IMMUNE LEVEL APPROACH FOR MULTIPLE STRAIN PATHOGENS. Journal of Biological Systems, 2009, 17, 713-737.	0.5	7
100	Mathematical and Statistical Estimation Approaches in Epidemiology. , 2009, , .		63
101	The Epidemiological Impact of Rotavirus Vaccination Programs in the United States and Mexico. , 2009, , 303-323.		3
102	Spatial and Temporal Dynamics of Rubella in Peru, 1997–2006: Geographic Patterns, Age at Infection and Estimation of Transmissibility. , 2009, , 325-341.		2
103	The Role of Nonlinear Relapse on Contagion Amongst Drinking Communities. , 2009, , 343-360.		7
104	Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences and Engineering, 2009, 6, 209-237.	1.0	72
105	The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences and Engineering, 2009, 6, 261-282.	1.0	98
106	Modeling TB and HIV co-infections. Mathematical Biosciences and Engineering, 2009, 6, 815-837.	1.0	86
107	Population modeling of the emergence and development of scientific fields. Scientometrics, 2008, 75, 495-518.	1.6	124
108	Mathematical Models of Influenza: The Role of Cross-Immunity, Quarantine and Age-Structure. Lecture Notes in Mathematics, 2008, , 349-364.	0.1	11

#	Article	IF	CITATIONS
109	A schistosomiasis model with mating structure and time delay. Mathematical Biosciences, 2008, 211, 333-341.	0.9	40
110	Spatial and temporal dynamics of dengue fever in Peru: 1994–2006. Epidemiology and Infection, 2008, 136, 1667-1677.	1.0	65
111	Estimation of invasive pneumococcal disease dynamics parameters and the impact of conjugate vaccination in Australia. Mathematical Biosciences and Engineering, 2008, 5, 175-204.	1.0	13
112	Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state. Mathematical Biosciences and Engineering, 2008, 5, 713-727.	1.0	5
113	Estimation of the reproduction number of dengue fever from spatial epidemic data. Mathematical Biosciences, 2007, 208, 571-589.	0.9	173
114	On the role of cross-immunity and vaccines on the survival of less fit flu-strains. Theoretical Population Biology, 2007, 71, 20-29.	0.5	23
115	Drinking as an Epidemic—A Simple Mathematical Model with Recovery and Relapse. , 2007, , 353-368.		39
116	Towards Real Time Epidemiology: Data Assimilation, Modeling and Anomaly Detection of Health Surveillance Data Streams. Lecture Notes in Computer Science, 2007, , 79-90.	1.0	16
117	Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: application to the 2003 outbreak in Mexico. Statistics in Medicine, 2006, 25, 1840-1857.	0.8	24
118	The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models. Physica A: Statistical Mechanics and Its Applications, 2006, 364, 513-536.	1.2	326
119	An age-structured epidemic model of rotavirus with vaccination. Journal of Mathematical Biology, 2006, 53, 719-746.	0.8	67
120	The role of spatial mixing in the spread of foot-and-mouth disease. Preventive Veterinary Medicine, 2006, 73, 297-314.	0.7	30
121	Raves, clubs and ecstasy: the impact of peer pressure. Mathematical Biosciences and Engineering, 2006, 3, 249-266.	1.0	42
122	The influence of infectious diseases on population genetics. Mathematical Biosciences and Engineering, 2006, 3, 467-483.	1.0	6
123	Global behavior of a multi-group SIS epidemic model with age structure. Journal of Differential Equations, 2005, 218, 292-324.	1.1	89
124	Dynamics of Two-Strain Influenza with Isolation and Partial Cross-Immunity. SIAM Journal on Applied Mathematics, 2005, 65, 964-982.	0.8	113
125	A Simple Epidemic Model with Surprising Dynamics. Mathematical Biosciences and Engineering, 2005, 2, 133-152.	1.0	63
126	Effects of behavioral changes in a smallpox attack model. Mathematical Biosciences, 2005, 195, 228-251.	0.9	155

#	Article	IF	CITATIONS
127	Pediatric electrocardiograph abnormalities following Centruroides limpidus tecomanus scorpion envenomation. Toxicon, 2005, 45, 27-31.	0.8	19
128	The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2, 753-769.	1.0	23
129	Model Parameters and Outbreak Control for SARS. Emerging Infectious Diseases, 2004, 10, 1258-1263.	2.0	195
130	Implications of Systems Dynamic Models and Control Theory for Environmental Approaches to the Prevention of Alcohol- and Other Drug Use-Related Problems. Substance Use and Misuse, 2004, 39, 1713-1750.	0.7	29
131	The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. Journal of Theoretical Biology, 2004, 229, 119-126.	0.8	466
132	Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences and Engineering, 2004, 1, 361-404.	1.0	1,229
133	Implications of systems dynamic models and control theory for environmental approaches to the prevention of alcohol- and other drug use-related problems. , 2004, 39, 1713-50.		4
134	Coexistence of pathogens in sexually-transmitted disease models. Journal of Mathematical Biology, 2003, 47, 547-568.	0.8	20
135	SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. Journal of Theoretical Biology, 2003, 224, 1-8.	0.8	239
136	Diseases with chronic stage in a population with varying size. Mathematical Biosciences, 2003, 182, 1-25.	0.9	64
137	Scaling laws for the movement of people between locations in a large city. Physical Review E, 2003, 68, 066102.	0.8	151
138	Identification of geographic factors associated with early spread of foot-and-mouth disease. American Journal of Veterinary Research, 2003, 64, 1519-1527.	0.3	20
139	Mathematical Models of Isolation and Quarantine. JAMA - Journal of the American Medical Association, 2003, 290, 2876-2877.	3.8	70
140	7. Models for the Transmission Dynamics of Fanatic Behaviors. , 2003, , 155-172.		25
141	8. An Epidemic Model with Virtual Mass Transportation: The Case of Smallpox in a Large City. , 2003, , 173-197.		11
142	2. Worst-Case Scenarios and Epidemics. , 2003, , 35-53.		2
143	Bioterrorism: Mathematical Modeling Applications in Homeland Security. , 2003, , .		26
144	Global Dynamics of Tuberculosis Models with Density Dependent Demography. The IMA Volumes in Mathematics and Its Applications, 2002, , 275-294.	0.5	10

#	Article	IF	CITATIONS
145	Tuberculosis models with fast and slow dynamics: the role of close and casual contacts. Mathematical Biosciences, 2002, 180, 187-205.	0.9	105
146	Markers of Disease Evolution: The Case of Tuberculosis. Journal of Theoretical Biology, 2002, 215, 227-237.	0.8	57
147	Interplay between Local Dynamics and Dispersal in Discrete-time Metapopulation Models. Journal of Theoretical Biology, 2002, 218, 273-288.	0.8	38
148	Age-Structured Core Group Model and its Impact on STD Dynamics. The IMA Volumes in Mathematics and Its Applications, 2002, , 261-273.	0.5	10
149	Intraspecific Competition, Dispersal and Disease Dynamics in Discrete-Time Patchy Environments. The IMA Volumes in Mathematics and Its Applications, 2002, , 165-181.	0.5	11
150	On the Computation of R 0 and its Role on Global Stability. The IMA Volumes in Mathematics and Its Applications, 2002, , 229-250.	0.5	243
151	Nonlinear Mating Models for Populations with Discrete Generations. The IMA Volumes in Mathematics and Its Applications, 2002, , 251-268.	0.5	4
152	Frequency Dependent Risk of Infection and the Spread of Infectious Diseases. The IMA Volumes in Mathematics and Its Applications, 2002, , 341-350.	0.5	2
153	Discrete-Time S-I-S Models With Simple and Complex Population Dynamics. The IMA Volumes in Mathematics and Its Applications, 2002, , 153-163.	0.5	11
154	Long-Term Dynamics and Re-Emergence of Tuberculosis. The IMA Volumes in Mathematics and Its Applications, 2002, , 351-360.	0.5	3
155	Dispersal, disease and life-history evolution. Mathematical Biosciences, 2001, 173, 35-53.	0.9	77
156	Discrete-time S-I-S models with complex dynamics. Nonlinear Analysis: Theory, Methods & Applications, 2001, 47, 4753-4762.	0.6	82
157	On the Role of Variable Latent Periods in Mathematical Models for Tuberculosis. Journal of Dynamics and Differential Equations, 2001, 13, 425-452.	1.0	79
158	Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, 2001, , .	0.4	863
159	Basic Ideas of Mathematical Epidemiology. Texts in Applied Mathematics, 2001, , 275-337.	0.4	12
160	Urn models and vaccine efficacy estimation. , 2000, 19, 827-835.		10
161	Transmission and Dynamics of Tuberculosis on Generalized Households. Journal of Theoretical Biology, 2000, 206, 327-341.	0.8	83
162	A note on pair-formation functions. Mathematical and Computer Modelling, 2000, 31, 83-91.	2.0	8

#	Article	IF	CITATIONS
163	A Model for Tuberculosis with Exogenous Reinfection. Theoretical Population Biology, 2000, 57, 235-247.	0.5	298
164	Density-dependent dynamics and superinfection in an epidemic model. Mathematical Medicine and Biology, 1999, 16, 307-317.	0.8	20
165	Competitive Exclusion and Coexistence of Multiple Strains in an SIS STD Model. SIAM Journal on Applied Mathematics, 1999, 59, 1790-1811.	0.8	84
166	A basic result on the integral for birth–death Markov processes. Mathematical Biosciences, 1999, 161, 95-104.	0.9	27
167	On the Relationship Between Evolution of Virulence and Host Demography. Journal of Theoretical Biology, 1998, 192, 437-444.	0.8	30
168	Backwards bifurcations and catastrophe in simple models of fatal diseases. Journal of Mathematical Biology, 1998, 36, 227-248.	0.8	269
169	Clobal stability of an age-structure model for TB and its applications to optimal vaccination strategies. Mathematical Biosciences, 1998, 151, 135-154.	0.9	122
170	The effects of females' susceptibility on the coexistence of multiple pathogen strains of sexually transmitted diseases. Journal of Mathematical Biology, 1997, 35, 503-522.	0.8	39
171	To treat or not to treat: the case of tuberculosis. Journal of Mathematical Biology, 1997, 35, 629-656.	0.8	254
172	The Evolution of Age-Structured Marriage Functions: It Takes Two to Tango. , 1997, , 533-553.		5
173	On the existence of stable pairing distributions. Journal of Mathematical Biology, 1996, 34, 413-441.	0.8	16
174	Competitive Exclusion in Gonorrhea Models and Other Sexually Transmitted Diseases. SIAM Journal on Applied Mathematics, 1996, 56, 494-508.	0.8	116
175	Effects of treatment and prevalence-dependent recruitment on the dynamics of a fatal disease. Mathematical Medicine and Biology, 1996, 13, 175-192.	0.8	33
176	Stochastic and deterministic models in epidemiology. , 1996, , 3211-3226.		0
177	Completion of mixing matrices for non-closed social networks. , 1996, , 3163-3174.		Ο
178	Modelling vector-host disease transmission and food web dynamics through the mixing/pair formation approach. , 1996, , 3175-3186.		1
179	A pair formation approach to modeling inheritance of social traits. , 1996, , 3227-3234.		0
180	On the existence of stable pairing distributions. Journal of Mathematical Biology, 1996, 34, 413-441.	0.8	2

4

#	Article	IF	CITATIONS
181	A core group model for disease transmission. Mathematical Biosciences, 1995, 128, 41-55.	0.9	205
182	Affinity in paired event probability. Mathematical Biosciences, 1995, 128, 265-284.	0.9	22
183	The logistic equation revisited: The two-sex case. Mathematical Biosciences, 1995, 128, 299-316.	0.9	55
184	Remembering Stavros Busenberg. Mathematical Biosciences, 1995, 128, 3-11.	0.9	3
185	Basic Models in Epidemiology. , 1995, , 410-447.		1
186	Basic Models in Epidemiology. , 1995, , 410-447.		3
187	Modeling Contact Structures in Biology. Lecture Notes in Biomathematics, 1994, , 454-491.	0.3	17
188	How May Infection-Age-Dependent Infectivity Affect the Dynamics of HIV/AIDS?. SIAM Journal on Applied Mathematics, 1993, 53, 1447-1479.	0.8	199
189	Empirical methods for the estimation of the mixing probabilities for socially structured populations from a single survey sample. Mathematical Population Studies, 1992, 3, 199-225.	0.8	18
190	Stability and Bifurcation for a Multiple-Group Model for the Dynamics of HIV/AIDS Transmission. SIAM Journal on Applied Mathematics, 1992, 52, 835-854.	0.8	180
191	Using mark-recapture methodology to estimate the size of a population at risk for sexually transmitted diseases. Statistics in Medicine, 1992, 11, 1533-1549.	0.8	25
192	On the Estimation Problem of Mixing/Pair Formation Matrices with Applications to Models for Sexually-Transmitted Diseases. , 1992, , 384-402.		11
193	Toward a unified theory of sexual mixing and pair formation. Mathematical Biosciences, 1991, 107, 379-405.	0.9	60
194	A General Solution of the Problem of Mixing of Subpopulations and its Application to Risk- and Age-Structured Epidemic Models for the Spread of AIDS. Mathematical Medicine and Biology, 1991, 8, 1-29.	0.8	131
195	On the Solution of the Two-Sex Mixing Problem. Lecture Notes in Biomathematics, 1991, , 80-98.	0.3	18
196	Scaling of sexual activity. Nature, 1990, 344, 202-202.	13.7	26
197	Environmental context, social interactions, and the spread of HIV. American Journal of Human Biology, 1990, 2, 397-417.	0.8	31

198 Topics in Evolutionary Ecology. , 1990, , 327-358.

#	Article	IF	CITATIONS
199	Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus. Applied Mathematics Letters, 1989, 2, 327-331.	1.5	69
200	Dynamical models of ecosystems and epidemics. Future Generation Computer Systems, 1989, 5, 265-274.	4.9	14
201	Epidemiological models with age structure, proportionate mixing, and cross-immunity. Journal of Mathematical Biology, 1989, 27, 233-258.	0.8	244
202	On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Journal of Mathematical Biology, 1989, 27, 373-398.	0.8	121
203	Like-with-like preference and sexual mixing models. Mathematical Biosciences, 1989, 96, 221-238.	0.9	94
204	The Role of Long Periods of Infectiousness in the Dynamics of Acquired Immunodeficiency Syndrome (AIDS). Lecture Notes in Biomathematics, 1989, , 177-189.	0.3	24
205	Review of Recent Models of HIV/AIDS Transmission. Biomathematics, 1989, , 253-262.	0.7	10
206	Some Applications of Structured Models in Population Dynamics. Biomathematics, 1989, , 450-470.	0.7	8
207	Statistical and Mathematical Approaches in HIV/AIDS Modeling: A Review. Lecture Notes in Biomathematics, 1989, , 2-35.	0.3	10
208	Mixing Framework for Social/Sexual Behavior. Lecture Notes in Biomathematics, 1989, , 275-288.	0.3	26
209	Interaction, Pair Formation and Force of Infection Terms in Sexually Transmitted Diseases. Lecture Notes in Biomathematics, 1989, , 289-300.	0.3	37
210	On the Role of Variable Infectivity in the Dynamics of the Human Immunodeficiency Virus Epidemic. Lecture Notes in Biomathematics, 1989, , 157-176.	0.3	41
211	On the Role of Long Incubation Periods in the Dynamics of Acquired Immunodeficiency Syndrome (AIDS). Part 2: Multiple Group Models. Lecture Notes in Biomathematics, 1989, , 200-217.	0.3	30
212	A Distributed-Delay Model for the Local Population Dynamics of a Parasitoid-Host System. Lecture Notes in Biomathematics, 1989, , 152-162.	0.3	0
213	Physiological and Behavioral Adaptation to Varying Environments: A Mathematical Model. Evolution; International Journal of Organic Evolution, 1988, 42, 986.	1.1	27
214	PHYSIOLOGICAL AND BEHAVIORAL ADAPTATION TO VARYING ENVIRONMENTS: A MATHEMATICAL MODEL. Evolution; International Journal of Organic Evolution, 1988, 42, 986-994.	1.1	51
215	Nonlinear character dependent models with constant time delay in population dynamics. Journal of Mathematical Analysis and Applications, 1987, 128, 1-29.	0.5	4
216	Linear character-dependent models with constant time delay in population dynamics. Mathematical Modelling, 1987, 9, 821-836.	0.2	3