
Christopher J Guerriero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2896006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Delicate Balance Between Secreted Protein Folding and Endoplasmic Reticulum-Associated Degradation in Human Physiology. Physiological Reviews, 2012, 92, 537-576.	28.8	339
2	Differential involvement of endocytic compartments in the biosynthetic traffic of apical proteins. EMBO Journal, 2007, 26, 3737-3748.	7.8	113
3	Discovery and Validation of a New Class of Small Molecule Toll-Like Receptor 4 (TLR4) Inhibitors. PLoS ONE, 2013, 8, e65779.	2.5	105
4	Chaperoning Endoplasmic Reticulum–Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033928.	5.5	100
5	Membrane traffic and turnover in TRP-ML1–deficient cells: a revised model for mucolipidosis type IV pathogenesis. Journal of Experimental Medicine, 2008, 205, 1477-1490.	8.5	85
6	Hsp70 Targets a Cytoplasmic Quality Control Substrate to the San1p Ubiquitin Ligase. Journal of Biological Chemistry, 2013, 288, 18506-18520.	3.4	74
7	Chemical Induction of Hsp70 Reduces α-Synuclein Aggregation in Neuroglioma Cells. ACS Chemical Biology, 2013, 8, 1460-1468.	3.4	61
8	Phosphatidylinositol 5-Kinase Stimulates Apical Biosynthetic Delivery via an Arp2/3-dependent Mechanism*. Journal of Biological Chemistry, 2006, 281, 15376-15384.	3.4	50
9	N-WASP inhibitor wiskostatin nonselectively perturbs membrane transport by decreasing cellular ATP levels. American Journal of Physiology - Cell Physiology, 2007, 292, C1562-C1566.	4.6	46
10	OCRL1 function in renal epithelial membrane traffic. American Journal of Physiology - Renal Physiology, 2010, 298, F335-F345.	2.7	37
11	Combined chemical–genetic approach identifies cytosolic HSP70 dependence in rhabdomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9015-9020.	7.1	33
12	Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations. Structure, 2015, 23, 1526-1537.	3.3	31
13	Phosphatidylinositol 4-Phosphate 5-Kinase Reduces Cell Surface Expression of the Epithelial Sodium Channel (ENaC) in Cultured Collecting Duct Cells. Journal of Biological Chemistry, 2007, 282, 36534-36542.	3.4	27
14	Differential Sorting and Golgi Export Requirements for Raft-associated and Raft-independent Apical Proteins along the Biosynthetic Pathway. Journal of Biological Chemistry, 2008, 283, 18040-18047.	3.4	27
15	Substrate Insolubility Dictates Hsp104-Dependent Endoplasmic-Reticulum-Associated Degradation. Molecular Cell, 2018, 70, 242-253.e6.	9.7	27
16	ESCRT regulates surface expression of the Kir2.1 potassium channel. Molecular Biology of the Cell, 2014, 25, 276-289.	2.1	24
17	Transmembrane helix hydrophobicity is an energetic barrier during the retrotranslocation of integral membrane ERAD substrates. Molecular Biology of the Cell, 2017, 28, 2076-2090.	2.1	22
18	Compensation of select proteostasis networks after Hsp70 inhibition in cancer. Journal of Cell Science, 2018, 131, .	2.0	16

2

#	Article	IF	CITATIONS
19	Hsp104 facilitates the endoplasmicâ€reticulum–associated degradation of diseaseâ€associated and aggregationâ€prone substrates. Protein Science, 2019, 28, 1290-1306.	7.6	16
20	PIP5KIβ Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells. PLoS ONE, 2013, 8, e53790.	2.5	13
21	Substrate ubiquitination retains misfolded membrane proteins in the endoplasmic reticulum for degradation. Cell Reports, 2021, 36, 109717.	6.4	9
22	ADP-ribosylation Factor 1-independent Protein Sorting and Export from the trans-Golgi Network. Journal of Biological Chemistry, 2004, 279, 52735-52743.	3.4	7
23	A campaign targeting a conserved Hsp70 binding site uncovers how subcellular localization is linked to distinct biological activities. Cell Chemical Biology, 2022, 29, 1303-1316.e3.	5.2	7
24	Harmonizing Experimental Data with Modeling to Predict Membrane Protein Insertion in Yeast. Biophysical Journal, 2019, 117, 668-678.	0.5	4
25	Distinct classes of misfolded proteins differentially affect the growth of yeast compromised for proteasome function. FEBS Letters, 2021, 595, 2383-2394.	2.8	4
26	Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis. Journal of Cell Biology, 2008, 181, i17-i17.	5.2	0