Ilia N Karatsoreos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/289590/publications.pdf

Version: 2024-02-01

68 papers 6,299 citations

36 h-index 63 g-index

92 all docs 92 docs citations

92 times ranked 8658 citing authors

#	Article	IF	CITATIONS
1	Mechanisms of stress in the brain. Nature Neuroscience, 2015, 18, 1353-1363.	7.1	1,056
2	Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1657-1662.	3.3	461
3	Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14075-14079.	3 . 3	391
4	Psychobiological allostasis: resistance, resilience and vulnerability. Trends in Cognitive Sciences, 2011, 15, 576-584.	4.0	358
5	Recruitment of Prefrontal Cortical Endocannabinoid Signaling by Glucocorticoids Contributes to Termination of the Stress Response. Journal of Neuroscience, 2011, 31, 10506-10515.	1.7	299
6	Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Molecular Psychiatry, 2011, 16, 156-170.	4.1	277
7	Stress History and Pubertal Development Interact to Shape Hypothalamic-Pituitary-Adrenal Axis Plasticity. Endocrinology, 2006, 147, 1664-1674.	1.4	249
8	Sleep Deprivation and Circadian Disruption. Sleep Medicine Clinics, 2015, 10, 1-10.	1.2	226
9	Endocrine and Physiological Changes in Response to Chronic Corticosterone: A Potential Model of the Metabolic Syndrome in Mouse. Endocrinology, 2010, 151, 2117-2127.	1.4	221
10	Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15731-15736.	3.3	191
11	Annual Research Review: The neurobiology and physiology of resilience and adaptation across the life course. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2013, 54, 337-347.	3.1	167
12	Rapid elevations in limbic endocannabinoid content by glucocorticoid hormones in vivo. Psychoneuroendocrinology, 2010, 35, 1333-1338.	1.3	147
13	Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Molecular Psychiatry, 2014, 19, 588-598.	4.1	134
14	Links between Circadian Rhythms and Psychiatric Disease. Frontiers in Behavioral Neuroscience, 2014, 8, 162.	1.0	117
15	Phenotype Matters: Identification of Light-Responsive Cells in the Mouse Suprachiasmatic Nucleus. Journal of Neuroscience, 2004, 24, 68-75.	1.7	112
16	A Role for Androgens in Regulating Circadian Behavior and the Suprachiasmatic Nucleus. Endocrinology, 2007, 148, 5487-5495.	1.4	105
17	Gonadectomy reveals sex differences in circadian rhythms and suprachiasmatic nucleus androgen receptors in mice. Hormones and Behavior, 2008, 53, 422-430.	1.0	104
18	Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. Cell Reports, 2018, 25, 1-9.e5.	2.9	100

#	Article	IF	CITATIONS
19	A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 285-290.	3.3	99
20	Pubertal maturation and time of day differentially affect behavioral and neuroendocrine responses following an acute stressor. Hormones and Behavior, 2006, 50, 463-468.	1.0	96
21	Minireview: The Neuroendocrinology of the Suprachiasmatic Nucleus as a Conductor of Body Time in Mammals. Endocrinology, 2007, 148, 5640-5647.	1.4	93
22	Androgens Modulate Structure and Function of the Suprachiasmatic Nucleus Brain Clock. Endocrinology, 2011, 152, 1970-1978.	1.4	85
23	Dysregulated Hypothalamicââ,¬â€œPituitaryââ,¬â€œAdrenal Axis Function Contributes to Altered Endocrine and Neurobehavioral Responses to Acute Stress. Frontiers in Psychiatry, 2015, 6, 31.	1.3	77
24	Leptin Induces Hippocampal Synaptogenesis via CREB-Regulated MicroRNA-132 Suppression of p250GAP. Molecular Endocrinology, 2014, 28, 1073-1087.	3.7	74
25	Effects of Circadian Disruption on Mental and Physical Health. Current Neurology and Neuroscience Reports, 2012, 12, 218-225.	2.0	63
26	Resilience and vulnerability: a neurobiological perspective. F1000prime Reports, 2013, 5, 13.	5.9	61
27	Dose-Dependent Effects of Androgens on the Circadian Timing System and Its Response to Light. Endocrinology, 2012, 153, 2344-2352.	1.4	60
28	Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock. European Journal of Neuroscience, 2006, 23, 1047-1053.	1.2	56
29	Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology, 2019, 102, 248-255.	1.3	56
30	Nuclear receptor REV-ERBα mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5730-5735.	3.3	54
31	Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function. Psychoneuroendocrinology, 2016, 66, 151-158.	1.3	47
32	Glucocorticoid Receptor mRNA Expression in the Hippocampal Formation of Male Rats before and after Pubertal Development in Response to Acute or Repeated Stress. Neuroendocrinology, 2008, 87, 160-167.	1.2	46
33	Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse. Brain, Behavior, and Immunity, 2015, 47, 14-23.	2.0	46
34	Age- and Stress-Induced Changes in Corticotropin-Releasing Hormone mRNA Expression in the Paraventricular Nucleus of the Hypothalamus. Neuroendocrinology, 2007, 85, 199-206.	1.2	43
35	Dihydrotestosterone Increases Hippocampal N-Methyl-d-Aspartate Binding But Does Not Affect Choline Acetyltransferase Cell Number in the Forebrain or Choline Transporter Levels in the CA1 Region of Adult Male Rats. Endocrinology, 2005, 146, 2091-2097.	1.4	40
36	Pubertal shifts in adrenal responsiveness to stress and adrenocorticotropic hormone in male rats. Psychoneuroendocrinology, 2014, 42, 146-152.	1.3	35

#	Article	IF	CITATIONS
37	Food for Thought: Hormonal, Experiential, and Neural Influences on Feeding and Obesity. Journal of Neuroscience, 2013, 33, 17610-17616.	1.7	32
38	The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. Frontiers in Neuroendocrinology, 2020, 56, 100819.	2.5	25
39	Chronic Corticosterone Treatment During Adolescence Has Significant Effects on Metabolism and Skeletal Development in Male C57BL6/N Mice. Endocrinology, 2017, 158, 2239-2254.	1.4	22
40	Blunted cortisol rhythm is associated with learning impairment in aged hamsters. Physiology and Behavior, 2004, 82, 339-344.	1.0	21
41	The effects of acute stress and pubertal development on metabolic hormones in the rat. Stress, 2007, 10, 101-106.	0.8	21
42	Reward and Aversive Stimuli Produce Similar Nonphotic Phase Shifts Behavioral Neuroscience, 2004, 118, 131-137.	0.6	20
43	Anatomic, hematologic, and biochemical features of C57BL/6NCrl mice maintained on chronic oral corticosterone. Comparative Medicine, 2012, 62, 348-60.	0.4	19
44	Cardiac autonomic activity during simulated shift work. Industrial Health, 2019, 57, 118-132.	0.4	16
45	Timing is everything: a collection on how clocks affect resilience in biological systems. F1000Research, 2014, 3, 273.	0.8	16
46	Circadian desynchronization alters metabolic and immune responses following lipopolysaccharide inoculation in male mice. Brain, Behavior, and Immunity, 2020, 88, 220-229.	2.0	14
47	Stress and Allostasis. , 2010, , 649-658.		13
48	Suprachiasmatic vasopressin and the circadian regulation of voluntary locomotor behavior. European Journal of Neuroscience, 2015, 41, 79-88.	1.2	10
49	Corticosterone inhibits vagal afferent glutamate release in the nucleus of the solitary tract via retrograde endocannabinoid signaling. American Journal of Physiology - Cell Physiology, 2020, 319, C1097-C1106.	2.1	10
50	Effect of Aging on Daily Rhythms of Lactate Metabolism in the Medial Prefrontal Cortex of Male Mice. Neuroscience, 2020, 448, 300-310.	1.1	10
51	Sleep Deprivation and Circadian Disruption Stress, Allostasis, and Allostatic Load. Sleep Medicine Clinics, 2022, 17, 253-262.	1.2	9
52	Circadian Regulation of the Brain and Behavior: A Neuroendocrine Perspective. Current Topics in Behavioral Neurosciences, 2019, 43, 323-351.	0.8	7
53	Brain–body responses to chronic stress: a brief review. Faculty Reviews, 2021, 10, 83.	1.7	7
54	What Is Stress?. , 2020, , 19-42.		5

#	Article	IF	CITATIONS
55	Chronic hypothalamic-pituitary-adrenal axis disruption alters glutamate homeostasis and neural responses to stress in male C57Bl6/N mice. Neurobiology of Stress, 2022, 19, 100466.	1.9	5
56	Contributions of prefrontal cortex and hippocampal neuronal populations to altered behavioral responses to acute stress following HPA-axis disruption. Psychoneuroendocrinology, 2015, 61, 63.	1.3	4
57	Stress: Common themes toward the next frontier. Frontiers in Neuroendocrinology, 2018, 49, 3-7.	2.5	4
58	Ghrelin Receptor Signaling Is Not Required for Glucocorticoid-Induced Obesity in Male Mice. Endocrinology, 2020, 161, .	1.4	4
59	What Is Stress?. , 2012, , 11-29.		4
60	Stress and Brain Function., 2012,, 497-507.		3
61	Interleukin-6 (IL-6) response to a simulated night-shift schedule is modulated by brain-derived neurotrophic factor (BDNF) genotype. Chronobiology International, 2020, 37, 1452-1456.	0.9	3
62	Sleep- and time of day-linked RNA transcript expression in wild-type and IL1 receptor accessory protein-null mice. Journal of Applied Physiology, 2020, 128, 1506-1522.	1.2	3
63	The relationship between circadian disruption and the development of metabolic syndrome and type 2 diabetes. ChronoPhysiology and Therapy, 2014, , 137.	0.5	2
64	Neuroinflammation May Indeed Be a Major Player in Opioid Use Disorder in Humans. Biological Psychiatry, 2021, 90, 511-512.	0.7	2
65	Circadian rhythms as modulators of stress resilience: From brain to body and back. Psychoneuroendocrinology, 2015, 61, 19.	1.3	1
66	Circadian Regulation of Endocrine Functions. , 2017, , 345-369.		1
67	Depression: What Is the Role of Physiological Dysregulation and Circadian Disruption?. Neuropsychoanalysis, 2009, 11, 70-75.	0.1	0
68	Obesity: Peripheral Signals, Neural and Peptidergic., 2016,, 3261-3281.		O